A. Voloshko, Ya. Bederak, T. Lutchyn
ABSTRACT
The efficiency of using the methods of operational forecasting for recovery of the data of electrical power consumption and methods of data recovery for operational forecasting has been proved. Specific methods that provide the best quality of short time forecasting or recovery of individual data with the estimate of their errors are given for each type of considered production.
KEYWORDS
data recovery, forecasting, MAPE.
REFERENCES
1. Chetyrkin, E.M. (1977), Statisticheskie metody prognozirovaniya [Statistical methods of forecasting], Statistika, Moscow, Russia.
2. Lukyanenko, I.G. and Krasnikova, L.I. (1998), Ekonometrika [Econometrics, Manual], Tovarystvo “Znannya”, Kyiv, Ukraine.
3. Zloba, Å.À. and Yatskiv, I.R. (2004), “Statistical methods for the recovery of missed data”, Computer Modeling & New Technologies, Vol. 6, pp. 51-61.
4. Kruglov, V.V. and Abramenkova, I.V. (2005), “Methods of recovery in data arrays”, Programnye produkty i sistemy, no. 2, available at: http://www.swsys.ru/index.php?page=article&id=528
5. Bykh, À.I., Vysotskaya, E.V., Rak, L.I. and et al. (2010), “The choice of the method for missed data recovery for estimation of cardiovascular activity of adolescents”, Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy, no. 3, pp. 4-7.
6. Voloshko, À.V., Bederak, Ya.S. and Lutchyn, T.M. (2013), “Problems of selection of the optimal mathematical model of power consumption at industrial enterprises” Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy, Iss. 5/8 (65), pp. 19-23.
7. Lukashyn, Yu.G. (1989), Adaptivnyie metody kratkosrochnogo prognozirovaniya [Adaptive methods of short-term forecasting], Ekonomika, Moscow, Russia.
8. Lebedeva, M.Yu. (2009), “Methods for time series prediction in marketing research”, Marketing v Rossii i za rubezhom, no. 4, available at: http://dis.ru/library/detail.php?ID=26589
9. Aivazyan, S.A. and Mkhitaryan, V.S. (2007), Prikladnaya statistika. Osnovy ekonometriki. Teoriya veroyatnostei i prikladnaya statistika [Applied statistics. Fundamentals of econometrics. Probability theory and applied statistics], Yuniti-Dana, Moscow, Russia.
10. Bederak, Ya.S. (2014), “Application of the method of exponential smoothing to recover lost data of technical accounting at industrial enterprises”, Elektrotekhnika i elektromekhanika, no. 4, pp. 52-55.
11. Bederak, Ya.S., Lutchyn, T.N. and Kudrytskyy, M.Yu. (2013), “Effect of sample size of power consumption data on the error of mathematical model”, Mezhdunarodnyy nauchnoissledovatelskiy zhurnal, no. 12, Part 1, pp. 37-40.
12. Voloshko, A.V., Bederak, Ya.S., Lutchyn, T.N. and Kudrytskyy, M.Yu. (2014), “On the question of recovery of credentials in chemical industry”, Izvestiya Tomskogo politekhnicheskogo universiteta, Vol. 324, no. 5, pp. 101-107.