Kh.M. Gamzaev
Èlektron. model. 2017, 39(4):31-42
https://doi.org/10.15407/emodel.39.04.031
ABSTRACT
The diffusion phase transformation process described by a nonlinear system of partial differential equations with a moving boundary has been considered. The inverse problem is formulated to determine the solute concentration on the external surface of the volume under consideration, which ensures the moving boundary displacement according to a given law. Applying the methods of fronts rectification and difference approximation, the problem posed is reduced to two difference problems. A computational algorithm is proposed for solving the obtained difference problems.
KEYWORDS
diffusion phase transformation, moving phase boundary, forward rectification method, boundary inverse problem, difference method.
REFERENCES
1. Lyubov, B.Ya. (1969), Kineticheskaya teoriya fazovykh prevrashcheniy [Kinetic theory of phase transformations], Metallurgiya, Moscow, USSR.
2. Lyubov, B.Ya. (1981), Diffuzionnyie protsessy v neodnorodnykh tvyordykh sredakh [Diffusion processes in inhomogeneous solid media], Nauka, Moscow, USSR.
3. Merer, Kh. (2011), Diffuziya v tvyordykh telakh [Diffusion in solids], Izdatelskiy dom «Intellect», Dolgoprudny, Russia.
4. Bokshtein, B.S. (1978), Diffuziya v metallakh [Diffusion in metals], Metallurgiya, Moscow, USSR.
5. Rubinshtein, L.I. (1967), Problema Stefana [The problem of Stefan], Zvaygzne, Riga, USSR.
6. Samarskiy, A.A. and Vabishchevich, P.N. (2003), Vychislitelnaya teploperedacha [Computing heat transfer], Editorial, Moscow, Russia.
7. Alifanov, O.M., Artyukhin, E.A. and Rumyantsev, S.V. (1988), Ekstremalnyie metody resheniya nekorrektnykh zadach [Extreme methods of the solution of incorrect problems], Nauka, Moscow, USSR.
8. Samarskiy, A.A. and Vabishchevich, P.N. (2009), Chislennyie metody resheniya obratnykh zadach matematicheskoi fiziki [Numerical methods of the solution of the inverse problems of mathematical physics], Izdatelstvo LKI, Moscow, Russia.
9. Goldman, N.L. (2002), “Classical and generalized solution of the two-phase boundary inverse Stefan problem”, Vychislitelnyiemetody i programmirovanie,Vol. 3, no. 1, pp. 133-143.
10. Goldman, N.L. (2003), “Properties of solutions of the inverse Stefan problem”, Differentsialnyie uravneniya, Vol. 39, no. 1, pp. 66-72.
11. Gamzaev, Kh.M. (2015), “Numerical solution of the problem of unsaturated filtration with a moving boundary”, Elektronnoe modelirovanie, Vol. 37, no. 1, pp.15-24.