ANALYSIS OF OPTIMIZING DATABASE PERFORMANCE METHODS

V.V. Dusheba, V.R. Gerasimov

Èlektron. model. 2024, 46(6):43-54

https://doi.org/10.15407/emodel.46.06.043

ABSTRACT

An in-depth analysis of modern database optimization methods to improve their performance, reliability, and scalability is carried out. The main attention is paid to relational (Oracle, MySQL, PostgreSQL) and NoSQL databases (MongoDB, Redis, Cassandra), which are widely used for data management. Key approaches to optimization are discussed, including designing efficient database schemas, normalization and denormalization, use of indexes, caching, sharding, and replication. Particular attention is paid to the importance of choosing the right database management system according to the type of information and specifics of queries, which significantly affects performance. Methods of optimizing SQL queries and client applications to reduce server load are analyzed. The balance between data integrity and data access speed is analyzed, which is critical for modern database management systems.

KEYWORDS

database optimization, normalization, denormalization, sharding, replication.

REFERENCES

  1. DB-Engines Ranking. URL: https://db-engines.com/en/ranking (date of access: 02.09.2024).
  2. Alotaibi O., Pardede E. Transformation of Schema from Relational Database (RDB) to NoSQL Databases // Data. 2019. Vol. 4, no. 4.
    https://doi.org/10.3390/data4040148
  3. Dash D., Polyzotis N., Ailamaki A. CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large Workloads // Proc. VLDB Endow. 2011. Vol. 4, no. 6. Pp. 362-
    https://doi.org/10.14778/1978665.1978668
  4. Kaizen: A Semi-Automatic IndexAdvisor / I. Jimenez, H. Sanchez, Q.T. Tran, N. Polyzotis // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. SIGMOD ʼ12. 2012. Pp. 685-688.
  5. Ankur S., Felix M. S., Jens D. The Case for Automatic Database Administration using Deep Reinforcement Learning. URL: https://www.researchgate.net/publication/322568144_ The_Case_for_Automatic_Database_Administration_using_Deep_Reinforcement_Learning (date of access: 18.11.2024).
  6. Chopade R., Pachghare V. MongoDB Indexing for Performance Improvement // ICT Systems and Sustainability. Advances in Intelligent Systems and Computing / Ed. by M. Tuba, S. Akashe, A. Joshi. Singapore: Springer, 2020. Vol. 1077. Pp. 338-
    https://doi.org/10.1007/978-981-15-0936-0_56
  7. URL: https://github.com/Huawei-Hadoop/hindex. (dateofaccess:05.09.2024).
  8. Aldibaja I., Suleiman A. Improving GDFS Web Cache Algorithm Using Semantic Similarity Measures // International Journal of Computer Science Trends and Technology. 2017. Vol. 5. Pp. 6-
  9. Visual Evaluationof SQL Plan Cache Algorithms / J. Kossmann, M. Dreseler, T. Gasdaetal. // Databases Theory and Applications / Ed. by J. Wang, G. Cong, J. Chen, J. Qi. — Berkeley, CA.: Springer, Cham, 2018. Pp. 350-
    https://doi.org/10.1007/978-3-319-92013-9_31
  10. Michiardi P., Carra D., Migliorini S. Cache-Based Multi-Query Optimization for Data-Intensive Scalable Computing Frameworks // Information Systems Frontiers. 2021. Vol. 23. Pp. 35-51.
    https://doi.org/10.1007/s10796-020-09995-2

Full text: PDF