THE MAIN STATEMENTS OF ONTOLOGY THEORY AND ITS IMPLEMENTATION IN THE SYSTEM OF LEGAL KNOWLEDGE

S.O. Kosenko, post-graduate student,
Pukhov Institute for Modelling in Energy Engineering, NAS of Ukraine;
15, General Naumov St, Kyiv, 03164, Ukraine, e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(1):93-114
https://doi.org/10.15407/emodel.40.01.093

ABSTRACT

The paper presents general information about a notion “ontology” historical derivation. Apart from this different ways of ontology term transformation for usage in artificial intelligence systems are analyzed. Ontology is regarded there as a complex of knowledge for clear representation of the data about events, phenomena, general and special notions concerning society, laws and the world. Apart from this, ontology is developed to supply different information about the subject of interest. There are a number of ontologies, namely surface, top, domain ones and so on, which form a base for further development of knowledge based systems and their application in combination with artificial intelligence and a set of databases for improving the process of logical
thinking and making relevant decisions. Ontologies are of particular importance for law and legal theory for rule formalization, accepting court resolutions and providing information about precedents and untypical cases. The ontology design criteria are also given along with the peculiarities of their application in legal domain. Ontologies are formed with specific goals, but there are no ways of forming their contents and design. The main task to be followed in ontology creation deals with the strict and clear formulation of the idea of ontology with allowance for the link between different ontologies.

KEYWORDS

ontology, law, artificial intelligence, conceptualization, domain of law.

REFERENCES

1. Genesereth, M.R. and Nilsson, N.J. (1988), Logical foundations of artificial intelligence, Morgan Kaufmann Publishers, California, USA.
2. Fulton, J.A. (1992), Standards working document ISO TC184/SC4/WG3 N103, IGES/PDSES Organization, Dictionary/Methodology Committee, USA, Technical report on the semantic unification meta-model.
3. Enderton, H.B. (1972), A mathematical introduction to logic, Academic Press, San Diego, USA.
4. Newell, R.R. (1982), The knowledge level, Artificial Intelligence, Vol. 18, no. 1, pp. 87-127, HYPERLINK «https://doi.org/10.1016/0004-3702%2882%2990012-1" \o »Persistent link using digital object identifier" \t «_blank» doi: 10.1016/0004-3702(82)90012-1.
https://doi.org/10.1016/0004-3702(82)90012-1
5. Levesque, H.J. (1984), Foundations of a functional approach to knowledge representation, Artificial Intelligence, Vol. 23, no. 1, pp. 155-212, available at: HYPERLINK «https://doi.org/10.1016/0004-3702%2884%2990009-2" \o »Persistent link using digital object identifier" \t «_blank» doi: 10.1016/0004-3702(84)90009-2.
https://doi.org/10.1016/0004-3702(84)90009-2
6. Gruber, T.R. (1995), Toward principles for the design of ontologies used for knowledge sharing, Int. Journal of Human-Computer Studies, Vol. 43, pp. 907-928, available at: HYPERLINK «https://doi.org/10.1006/ijhc.1995.1081" \o »Persistent link using digital object identifier" \t «_blank» doi: 10.1006/ijhc.1995.1081.
https://doi.org/10.1006/ijhc.1995.1081
7. McCarty, L.T. (2002), Ownership: A case study in representing legal concepts, Artificial Intelligence and Law, Vol. 10, pp. 135-161, doi:10.1023/A:1019584605638.
https://doi.org/10.1023/A:1019584605638
8. Genesereth, M.R. and Fikes, R.E. (1992), Knowledge interchange format, Version 3.0, Reference Manual, Tech. Rep. Logic-92-1, Computer Science Department, Stanford University, USA, doi: 10.1.1.54.8601.
9. Bench-Capon, T.J.M. and Visser, P.R.S. (1997), Ontologies in legal information systems; the need for explicit specifications of domain conceptualisations, Proceedings of the Sixth International Conference on Artificial Intelligence and Law (ICAIL ’97), Melbourne, Australia, 1997, pp.132-141, doi: HYPERLINK «https://doi.org/10.1145/261618.261646" \t »_self" 10.1145/261618.261646.
https://doi.org/10.1145/261618.261646
10. Noy, N.F., Fergerson, R.W. and Musen, M.A. (2000), The knowledge model of Protege-2000: Combining interoperability and flexibility, Proceedings of the 12th International Conference on Knowledge Engineering and Knowledge Management (EKAM 2000), Juanles-Pins, France, 2000, pp. 87-98, doi: 10.1007/3-540-39967-4_2.
https://doi.org/10.1007/3-540-39967-4_2
11. Visser, P.R.S. (1995), Knowledge specification for multiple tasks, Kluwer Law International Hague, Boston, USA.
12. Bench-Capon, T. and Jones, D. (1999), PRONTO: Ontology based evaluation of knowledge based systems, Validation and verification of knowledge based systems, Eds A. Vermesan and F. Coenen, Kluwer Academic Publishers, Dordrecht, Boston, USA, doi: 10.1007/978-1-4757-6916-6_7.
https://doi.org/10.1007/978-1-4757-6916-6_7
13. Aleven, V. (1997), Teaching case based argumentation through an example and models, PhD Thesis, The University of Pittsburgh, Pittsburg, USA, doi: 10.1.1.203.1165.
14. Ashley, K.D. (1990), Modeling legal argument, MIT Press, Cambridge, MA, USA.
15. Prakken, H. and Sartor, G. (1998), Modeling reasoning with precedents in a formal dialogue game, Artificial Intelligence and Law,Vol. 6, pp. 231-287, doi: 10.1007/978-94-015-9010-5_5.
https://doi.org/10.1007/978-94-015-9010-5_5
16. Ashley, K.D. and Bridewell, W. (2010), Emerging AI and law approaches to automating analysis and retrieval of electronically stored information in discovery proceedings, Artificial Intelligence and Law, Vol. 18, pp. 311-320, doi: 10.1007/s10506-010-9098-4.
https://doi.org/10.1007/s10506-010-9098-4
17. Bench-Capon, T. and Sartor, G. (2003), A model of legal reasoning with cases incorporating theories and values, Artificial Intelligence, Vol. 150, pp. 97-143, doi: HYPERLINK «https://doi.org/10.1016/S0004-3702%2803%2900108-5" \o »Persistent link using digital object identifier" \t «_blank» 10.1016/S0004-3702(03)00108-5.
18. Miller, G.A., Beckwith, R., Fellbaum, Ch., Gross, D. and Miller, K.J. (1990), Introduction to WordNet: an on-line lexical database, International Journal of Lexicography, Vol. 3, no. 4, pp. 361-373, doi: 10.1.1.105.1244.
19. Guha, R.V., Lenat, D.B., Pittman, K., Pratt, D. and Shepherd, M. (1990), CYC: A midterm report, Communications of the ACM,Vol. 33, no. 8, pp. 345-357, doi: 10.1080/08839519108927917.
https://doi.org/10.1080/08839519108927917
20. Valente, A. (1995), Legal knowledge engineering: A modelling approach, IOS Press, Amsterdam, Netherlands.
21. van Kralingen, R., Visser, P.R.S., Bench-Capon, T.J.M. and van der Herik, J. (1999), A principled methodology for the development of legal knowledge systems, International Journal of Human Computer Studies, Vol. 51, no. 6, pp. 1127-1154, doi: HYPERLINK «https://doi.org/10.1006/ijhc.1999.0300" \o »Persistent link using digital object identifier" \t «_blank» 10.1006/ijhc.1999.0300.
22. McCarty, L.T. (1989), A language for legal discourse I. Basic features, Proceedings of the Second International Conference on Artificial Intelligence and Law, New York, 1989, pp.180-189, doi: HYPERLINK «https://doi.org/10.1145/74014.74037" \t »_self" 10.1145/74014.74037.
https://doi.org/10.1145/74014.74037
23. McCarty, L.T. (2007), Deep semantic interpretations of legal texts, Proceedings of the Eleventh International Conference on Artificial Intelligence and Law, Stanford, CA, 2007, pp. 217-224,
doi: HYPERLINK «https://doi.org/10.1145/1276318.1276361" \t »_self" 10.1145/ 1276318.
1276361.
https://doi.org/10.1145/1276318.1276361
24. Stamper, R.K. (1991), The role of semantics in legal expert systems and legal reasoning, Ratio
Jurist, Vol. 4, no. 2, pp. 219-244, doi: 10.1111/j.1467-9337.1991.tb00094.x
https://doi.org/10.1111/j.1467-9337.1991.tb00094.x
25. Gruber, T.R. (1992), ONTOLINGUA:Amechanismto support portable ontologies,Knowledge systems laboratory, Tech. Rep., Stanford University, California, USA, doi: 10.1.1.34.9819.
26. Valente, A. andBreuker, J. (1999), Legalmodeling and automated reasoning with ON-LINE, International
Journal of Human-Computer Studies, Vol. 51, no. 6, pp. 1079-1125, doi: HYPERLINK «https://doi.org/10.1006/ijhc.1999.0298" \o »Persistent link using digital object identifier" \t «_blank» 10.1006/ijhc.1999.0298.
27. Valente, A. (2006), Types and roles of legal ontologies, Law and Semantic Web. LNAI 3369, Ed V.R. Benjamins, Springer Verlag, Berlin, Germany, doi: 10.1007/978-3-540-32253-5_5.
https://doi.org/10.1007/978-3-540-32253-5_5
28. Valente, A. and Breuker, J. (1994), A functional ontology of law, Towards a global expert system in law, Eds. G. Bargellini and S. Binazzi, CEDAM Publishers, Padua, Italy, doi: 10.1.1.39.8951.
29. Visser, P. and Bench-Capon, T. (1998), Acomparison of four ontologies for the design of legal knowledge systems, Artificial Intelligence and Law, Vol. 6, no. 1, pp. 54-68, doi: 10.1023/A:1008251913710
https://doi.org/10.1023/A:1008251913710
30. Bolioli, A., Dini, L., Mercatali, P. and Romano, F. (2002), For the automated mark-up of Italian legislative texts in XML, Legal Knowledge and Information Systems JURIX 2002: The Fifteenth Annual Conference, Eds. T. Bench-Capon, A. Daskalopulu, and R. Winkels, IOS Press, Amsterdam, Netherlands, pp. 21-30, doi: 10.1.1.106.6559.
31. Breuker, J., Elhag, A., Petkov, E. and Winkels, R. (2002), Ontologies for legal information serving and knowledge management, Legal Knowledge and Information Systems JURIX 2002: The Fifteenth Annual Conference, Eds. T. Bench-Capon, A. Daskalopulu, and R. Winkels, IOS Press, Amsterdam, Netherlands, pp. 73-82, doi: 10.1.1.59.1956.
32. van Engers, T.M., Gerrits, R., Boekenoogen, M., Glassee, E. and Kordelaar, P. (2001), POWER: using UML/OCL for modeling legislation - an application report, Proceedings of the 8th International Conference on Artificial intelligence and Law, ACM Press, New York, USA, pp. 157-167, doi: HYPERLINK «https://doi.org/10.1145/383535.383554" \t »_self" 10.1145/383535.383554.
https://doi.org/10.1145/383535.383554
33. Delgado, J., Gallego, I., Lorente, S. and Garcia, R. (2003), iPRONTO: An ontology for digital rights management, Legal Knowledge and Information Systems JURIX 2003: The Sixteenth Annual Conference, Ed. D. Bourcier, IOS Press, Amsterdam, Netherlands, pp. 111-121.
34. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P. and Cory, H.T. (1986), The British nationality act as a logic program, Communications of the ACM, Vo1. 29, no. 5, pp. 370-386, doi: HYPERLINK «https://doi.org/10.1145/5689.5920" \t »_self" 10.1145/5689.5920.
https://doi.org/10.1145/5689.5920
35. Sergot, M.J. (1991), The representation of law in computer programs, Knowledge Based Systems and Legal Applications, Ed. T.J.M. Bench-Capon, Academic Press, London, UK.
36. Kowalski, R.A. (1989), The treatment of negation in logic programs for representing legislation,
Proceedings of the Second International Conference on AI and Law, ACM Press, New York, USA, pp. 48-69, doi: HYPERLINK «https://doi.org/10.1145/74014.74016" \t »_self" 10.1145/74014.74016.
https://doi.org/10.1145/74014.74016
37. Bench-Capon, T.J.M. (1991), Practical legal expert systems: the relation between a formalisation of law and expert knowledge, Computers, Law and AZ, Eds. J. Bennun and M. Narayanan, Ablex, New York, USA, pp. 191-201.
38. McCarty, L.T. (1995), An implementation of Eisner vs Macomber, Proceedings of the Fifth International Conference on AI and Law, ACM Press, New York, USA, pp. 276-286, doi: HYPERLINK «https://doi.org/10.1145/222092.222258" \t »_self" 10.1145/222092.222258.
https://doi.org/10.1145/222092.222258
39. Moles, R.N. and Dayal, S. (1992), There is more to life than logic, Journal of Information Science, Vol. 3, no. 2, pp.188-218.
40. Wyner, A. (2008), An ontology in OWL for legal case-based reasoning, Artificial Intelligence and Law, Vol. 16, pp. 271-283, doi: 10.1007/s10506-008-9070-8.
https://doi.org/10.1007/s10506-008-9070-8
41. Prakken, H. (2006), Artificial intelligence and law, logic and argument schemes, Arguing on the Toulmin Model, Eds D. Hitchcock and B. Verheij, Dordrecht Springer, Berlin, Germany, pp. 91-117, doi: 10.1007/978-1-4020-4938-5_15.
https://doi.org/10.1007/978-1-4020-4938-5_15
42. Ashley, K. and Bruninghaus, S. (2009), Automatically classifying case texts and predicting outcomes, Artificial Intelligence and Law, Vol. 17, no. 2, pp. 125-165, doi: 10.1007/s10506-009-9077-9/ 
https://doi.org/10.1007/s10506-009-9077-9

Full text: PDF (in Russian)