MATHEMATICAL MODEL OF THE ANGULAR MOTION OF A SPACECRAFT IN THE RODRIG-HAMILTON PARAMETERS AND ITS PROPERTIES

N.V. Yefymenko

Èlektron. model. 2018, 40(6):21-35
https://doi.org/10.15407/emodel.40.06.021

ABSTRACT

A model of the rotational motion of a space vehicle in the form of a second-order differential equation with respect to the Rodrig-Hamilton paralleleters is considered. The properties of this equation are studied and a technique for the synthesis of spacecraft orientation algorithms is proposed, which makes it possible to find program trajectories of the reorientation of space vehicles. The results of experimental verification of the proposed technique on the Sich-2 spacecraft are presented.

KEYWORDS

Rodrig-Hamilton parameters, spacecraft, quaternion, orientation, dynamical equation for the quaternion.

REFERENCES

1. Koshlyakov, V.N. (1985), Zadachi dinamiki tverdogo tela i prikladnoy teorii giroskopov [Problems of the dynamics of a rigid body and the applied theory of gyroscopes], Nauka, Moscow, Russia.
2. Branets, V.N. and Shmyglevsky, I.P. (1973), Primeneniye kvaternionov v zadachakh oriyentatsii tverdogo tela [The use of quaternions in solid orientation problems], Nauka, Moscow, Russia.
3. Chelnokov, Yu.N. (1994), “Quaternionic solution of kinematic problems of controlling the orientation of a rigid body: Error equations, laws and algorithms for correction (stabilization)”, Mekhanika tverdogo tela, no. 4, pp. 3-12.
4. Chelnokov, Yu.N. (1994), “Control of the orientation of the spacecraft using quaternions”, Kosmicheskiye issledovaniya, Vol. 32, no. 3, pp. 21-32.
5. Chelnokov, Yu.N. (2002), “The construction of controls for the angular motion of a rigid body, using quaternions and standard forms of equations of transient processes”, Mekhanika tverdogo tela, no. 1, pp. 3-17.
6. Lebedev, D.V. (1981), “On the Control of the Three-axis Orientation of a Solid Body”, Avtomat, no. 3, pp. 77-80.
7. Lebedev, D.V. (1990), “On the control of motion around the center of mass of a rotating rigid body”, Prikladnaya matematika i mekhanika, Vol. 54, no. 1, pp. 18-25.
8. Lebedev, D.V., Tkachenko, A.I. and Shtepa, Yu.N. (1996), “Magnetic system for controlling the angular motion of a microsatellite”, Kosmichna nauka i tehnologii, Vol. 2, no. 56, pp. 17-25.
9. Lebedev, D.V. and Tkachenko, A.I. (1997), “Magnetometric system for determining the parameters of motion of a spacecraft”, Problemy upravleniya i informatiki, no. 4, pp. 139-154.
10. Wie, B. (1985), “Quaternion Feedback for Spacecraft Large Angle Maneuvers”, Journal of Guidance, Control and Dynamics, Vol. 8, pp. 360-365.
https://doi.org/10.2514/3.19988
11. Gulyaev, V.I. and Koshkin, V.L. (1993), “Optimal control of the orientation of systems of solid and deformable bodies in a central force field”, Tekhnicheskaya kibernetika, no. 4, pp. 125-132.
12. Gavrilova, N.L. and Tkachenko , A.I. (1974), “On the stabilization of the position of a solid body”, Avtomatika, no. 6, pp. 3-8.
13. Wittenburg, I. (1990), Dinamika sistem tverdykh tel [Dynamics of solids systems], Mir, Moscow, Russia.
14. Yefymenko, N.V. (2015), “Synthesis of control algorithms for spatial reorientation of a spacecraft using dynamic equations of rotational motion of a rigid body in the parameters of Rodrig-Hamilton”, Problemy upravleniya i informatika, no. 3, pp. 145-155.
15. Kirichenko, N.V. and Matvienko, V.T. (2003), “Algorithms of asymptotic, terminal and  adaptive stabilization of rotational motions of a solid body”, Problemy upravleniya i informatika, no. 1, pp. 5-15.

Full text: PDF