MODELING OF TWO-COMPONENT MIXTURES OF SHIFTED DISTRIBUTIONS WITH ZERO CUMULANT COEFFICIENTS

A.I. Krasilnikov

Èlektron. model. 2024, 46(4):19-38

https://doi.org/10.15407/emodel.46.04.019

ABSTRACT

For two-component mixtures of shifted distributions a general formula for finding the value of the shift parameter , at which the cumulant coefficients  of any order are equal to zero, is obtained. An algorithm for mathematical and computer modeling of two-component mixtures of shifted distributions with zero cumulant coefficients is formulated. General formulas for two-component mixtures of shifted gamma-distributions with zero cumulant coefficients of any order are obtained and examples of mixtures with zero skewness and kurtosis coefficients are given. General formulas of two-component mixtures of shifted Student’s distributions with zero cumulant coefficients of any order are obtained and examples of mixtures with zero kurtosis coefficient and coefficient  are given. The research results provide the practical possibility of using two-component mixtures of shifted distributions for mathematical and computer modeling of non-Gaussian random variables with zero cumulant coefficients of any order.

KEYWORDS

non-Gaussian distributions, two-component mixtures of distributions, cumulant analysis, cumulant coefficients, skewness coefficient, kurtosis coefficient.

REFERENCES

  1. Malakhov, A.N. (1978). Kumuliantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii [Cumulant analysis of random non-Gaussian processes and their transformations]. Moscow: Sovetskoie radio. (in Russian).
  2. Kunchenko, Yu.P. (2001). Polinomialnyie otsenki parametrov blizkikh k gaussovskim sluchainykh velichin. Ch. 1. Stokhasticheskiie polinomy, ikh svoistva i primeneniia dlia nakho­zhdeniia otsenok parametrov [Polynomial Parameter Estimations of Close to Gaussian Random variables. Part 1. Stochastic Polynomials, Their Properties and Applications for Finding Parameter Estimations]. Cherkassy: ChITI. (in Russian).
  3. Krasilnikov, A.I., Beregun, V.S. & Polobyuk, T.A. (2019). Kumuliantnyie metody v zada­chakh shumovoi diagnostiki teploenergeticheskogo oborudovaniia [Cumulant methods in the problems of noise diagnostics of heat-and-power equipment]. A.I. Krasilnikov [Ed.]. Kyiv: Osvita Ukrainy. (in Russian)
  4. De Carlo, L.T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3). 292-307.
    https://doi.org/10.1037/1082-989X.2.3.292
  5. Blanca, M.J., Arnau, J., Lopez-Montiel, D., Bono, R. & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, (9). 78-84.
    https://doi.org/10.1027/1614-2241/a000057
  6. Bezuglov, D.A., Andriushchenko, I.V. & Shvidchenko, S.A. (2011). Cumulant method for identifying the type of distribution law of measurement results. Servis v Rossii i za rubezhom, (5). 30-39. (in Russian).
  7. Kuznetsov, B.F., Borodkin, D.K. & Lebedeva, L.V. (2013). Cumulant Models of Additional Errors. Sovremennyie tekhnologii. Sistemnyi analiz. Modelirovaniie, 1(37). 134-138. (in Russian).
  8. Malkin, A.L., Sorin, A.Ya. & Finikov, D.B. (1986). Application of Cumulant Analysis in Statistical Processing of Seismic Records. Geologiia i geofizika, (5). 75-85. (in Russian).
  9. Alexandrou, D., De Moustier, C. & Haralabus, G. (1992). Evaluation and verification of bottom acoustic reverberation statistics predicted by the point scattering model. Acoust. Soc. Am., 91(3). 1403-1413.
    https://doi.org/10.1121/1.402471
  10. Müller, R.A.J., von Benda-Beckmann, A.M., Halvorsen, M.B. & Ainslie, M.A. (2020). Application of kurtosis to underwater sound. Acoust. Soc. Am., 148(2). 780-792. 
    https://doi.org/10.1121/10.0001631
  11. Zapevalov, A.S. & Garmashov, A.V. (2021). Skewness and Kurtosis of the Surface Wave in the Coastal Zone of the Black Sea. Morskoi gidrofizicheskii zhurnal, 37(4). 447-459. 
    https://doi.org/10.22449/0233-7584-2021-4-447-459
  12. Wang, H. & Chen, P. (2009). Fault Diagnosis Method Based on Kurtosis Wave and Information Divergence for Rolling Element Bearings. WSEAS Transactions on Systems, 8(10). 1155-1165.
  13. Mohammed, T.S., Rasheed, M., Al-Ani, M., Al-Shayea, Q. & Alnaimi, F. (2020). Fault Diagnosis of Rotating Machine Based on Audio Signal Recognition System: An Efficient Approach. International Journal of Simulation: Systems, Science & Technology, 21(1). 8.1-8.8. 
    https://doi.org/10.5013/IJSSST.a.21.01.08
  14. Hildebrand, D.K. (1971). Kurtosis measures bimodality? statist., 25(1). 42-43.
    https://doi.org/10.1080/00031305.1971.10477241
  15. Joiner, B.L. & Rosenblatt, J.R. (1971). Some properties of the range in samples from Tukey’s symmetric lambda distributions. Amer. Statist. Assoc., 66(334). 394-399.
    https://doi.org/10.1080/01621459.1971.10482275
  16. Kale, B.K. & Sebastian, G. (1996). On a Class of Symmetric Nonnormal Distributions with a Kurtosis of Three. In H.N. Nagaraja et al. (eds.) Statistical Theory and Applications (P. 55-63). Springer-Verlag New York, Inc.
    https://doi.org/10.1007/978-1-4612-3990-1_6
  17. Krasilnikov, A.I. (2016). Models of asymmetrical distributions of random variables with zero asymmetry coefficient. Elektronnoie modelirovaniie, 38(1). 19–33. (in Russian).
    https://doi.org/10.15407/emodel.38.01.019
  18. Johnson, M.E., Tietjen, G.L. & Beckman, R.J. (1980). A New Family of Probability Distributions With Applications to Monte Carlo Studies. Amer. Statist. Assoc., 75(370). 276-279.
    https://doi.org/10.1080/01621459.1980.10477464
  19. Krasil’nikov, A.I. (2013). Class non-Gaussian distributions with zero skewness and kurtosis. Radioelectronics and Communications Systems, 56(6), 312-320.
    https://doi.org/10.3103/S0735272713060071
  20. Krasilnikov, A.I. (2017). Class of Non-Gaussian Symmetric Distributions with Zero Coefficient of Elektronnoie modelirovaniie, 39(1), 3-17. 
    https://doi.org/10.15407/emodel.39.01.003
  21. Krasylnikov, O.I. (2023). Classification of models of two-component mixtures of symmetrical distributions with zero kurtosis coefficient. Elektronne modeliuvannia, 45(5). 20- 
    https://doi.org/10.15407/emodel.45.05.020
  22. Barakat, H.M. (2015). A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Statistical Methods & Applications, 24(3), 359-372. 
    https://doi.org/10.1007/s10260-014-0265-8
  23. Krasilnikov, A.I. (2020). Analysis of Cumulant Coefficients of Two-component Mixtures of Shifted Gaussian Distributions with Equal Variances. Elektronnoie modelirovanie, 42(3), 71-88. 
    https://doi.org/10.15407/emodel.42.03.071
  24. Barakat, H.M., Aboutahoun, A.W. & El-kadar, N.N. (2019). A New Extended Mixture Skew Normal Distribution, With Revista Colombiana de Estadstica, 42(2), 167-183.
    https://doi.org/10.15446/rce.v42n2.70087
  25. Krasilnikov, A.I. (2018). The Application of Two-Component Mixtures of Shifted Distributions for Modeling Perforated Random Variables. Elektronnoie modelirovaniie, 40(6), 83-98. 
    https://doi.org/10.15407/emodel.40.06.083
  26. Krasilnikov, A.I. (2018). The Application of Two-Component Mixtures of Shifted Distributions for Modeling Perforated Random Variables. Elektronnoie modelirovaniie, 40(6), 83-98. 
    https://doi.org/10.15407/emodel.40.06.083
  27. Krasylnikov, O.I. (2021). Analysis of Cumulant Coefficients of Two-Component Mixtures of Shifted Non-Gaussian Distributions. Elektronne modeliuvannia, 43(5), 73-92. 
    https://doi.org/10.15407/emodel.43.05.073
  28. Vadzinskii, R.N. (2001). Spravochnik po veroiatnostnym raspredeleniiam [Directory on Probabilistic Distributions]. St. Petersburg: Nauka. (in Russian).

Full text: PDF