A.I. Krasilnikov
Èlektron. model. 2024, 46(4):19-38
https://doi.org/10.15407/emodel.46.04.019
ABSTRACT
For two-component mixtures of shifted distributions a general formula for finding the value of the shift parameter , at which the cumulant coefficients of any order are equal to zero, is obtained. An algorithm for mathematical and computer modeling of two-component mixtures of shifted distributions with zero cumulant coefficients is formulated. General formulas for two-component mixtures of shifted gamma-distributions with zero cumulant coefficients of any order are obtained and examples of mixtures with zero skewness and kurtosis coefficients are given. General formulas of two-component mixtures of shifted Student’s distributions with zero cumulant coefficients of any order are obtained and examples of mixtures with zero kurtosis coefficient and coefficient are given. The research results provide the practical possibility of using two-component mixtures of shifted distributions for mathematical and computer modeling of non-Gaussian random variables with zero cumulant coefficients of any order.
KEYWORDS
non-Gaussian distributions, two-component mixtures of distributions, cumulant analysis, cumulant coefficients, skewness coefficient, kurtosis coefficient.
REFERENCES
- Malakhov, A.N. (1978). Kumuliantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii [Cumulant analysis of random non-Gaussian processes and their transformations]. Moscow: Sovetskoie radio. (in Russian).
- Kunchenko, Yu.P. (2001). Polinomialnyie otsenki parametrov blizkikh k gaussovskim sluchainykh velichin. Ch. 1. Stokhasticheskiie polinomy, ikh svoistva i primeneniia dlia nakhozhdeniia otsenok parametrov [Polynomial Parameter Estimations of Close to Gaussian Random variables. Part 1. Stochastic Polynomials, Their Properties and Applications for Finding Parameter Estimations]. Cherkassy: ChITI. (in Russian).
- Krasilnikov, A.I., Beregun, V.S. & Polobyuk, T.A. (2019). Kumuliantnyie metody v zadachakh shumovoi diagnostiki teploenergeticheskogo oborudovaniia [Cumulant methods in the problems of noise diagnostics of heat-and-power equipment]. A.I. Krasilnikov [Ed.]. Kyiv: Osvita Ukrainy. (in Russian)
- De Carlo, L.T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3). 292-307.
https://doi.org/10.1037/1082-989X.2.3.292 - Blanca, M.J., Arnau, J., Lopez-Montiel, D., Bono, R. & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, (9). 78-84.
https://doi.org/10.1027/1614-2241/a000057 - Bezuglov, D.A., Andriushchenko, I.V. & Shvidchenko, S.A. (2011). Cumulant method for identifying the type of distribution law of measurement results. Servis v Rossii i za rubezhom, (5). 30-39. (in Russian).
- Kuznetsov, B.F., Borodkin, D.K. & Lebedeva, L.V. (2013). Cumulant Models of Additional Errors. Sovremennyie tekhnologii. Sistemnyi analiz. Modelirovaniie, 1(37). 134-138. (in Russian).
- Malkin, A.L., Sorin, A.Ya. & Finikov, D.B. (1986). Application of Cumulant Analysis in Statistical Processing of Seismic Records. Geologiia i geofizika, (5). 75-85. (in Russian).
- Alexandrou, D., De Moustier, C. & Haralabus, G. (1992). Evaluation and verification of bottom acoustic reverberation statistics predicted by the point scattering model. Acoust. Soc. Am., 91(3). 1403-1413.
https://doi.org/10.1121/1.402471 - Müller, R.A.J., von Benda-Beckmann, A.M., Halvorsen, M.B. & Ainslie, M.A. (2020). Application of kurtosis to underwater sound. Acoust. Soc. Am., 148(2). 780-792.
https://doi.org/10.1121/10.0001631 - Zapevalov, A.S. & Garmashov, A.V. (2021). Skewness and Kurtosis of the Surface Wave in the Coastal Zone of the Black Sea. Morskoi gidrofizicheskii zhurnal, 37(4). 447-459.
https://doi.org/10.22449/0233-7584-2021-4-447-459 - Wang, H. & Chen, P. (2009). Fault Diagnosis Method Based on Kurtosis Wave and Information Divergence for Rolling Element Bearings. WSEAS Transactions on Systems, 8(10). 1155-1165.
- Mohammed, T.S., Rasheed, M., Al-Ani, M., Al-Shayea, Q. & Alnaimi, F. (2020). Fault Diagnosis of Rotating Machine Based on Audio Signal Recognition System: An Efficient Approach. International Journal of Simulation: Systems, Science & Technology, 21(1). 8.1-8.8.
https://doi.org/10.5013/IJSSST.a.21.01.08 - Hildebrand, D.K. (1971). Kurtosis measures bimodality? statist., 25(1). 42-43.
https://doi.org/10.1080/00031305.1971.10477241 - Joiner, B.L. & Rosenblatt, J.R. (1971). Some properties of the range in samples from Tukey’s symmetric lambda distributions. Amer. Statist. Assoc., 66(334). 394-399.
https://doi.org/10.1080/01621459.1971.10482275 - Kale, B.K. & Sebastian, G. (1996). On a Class of Symmetric Nonnormal Distributions with a Kurtosis of Three. In H.N. Nagaraja et al. (eds.) Statistical Theory and Applications (P. 55-63). Springer-Verlag New York, Inc.
https://doi.org/10.1007/978-1-4612-3990-1_6 - Krasilnikov, A.I. (2016). Models of asymmetrical distributions of random variables with zero asymmetry coefficient. Elektronnoie modelirovaniie, 38(1). 19–33. (in Russian).
https://doi.org/10.15407/emodel.38.01.019 - Johnson, M.E., Tietjen, G.L. & Beckman, R.J. (1980). A New Family of Probability Distributions With Applications to Monte Carlo Studies. Amer. Statist. Assoc., 75(370). 276-279.
https://doi.org/10.1080/01621459.1980.10477464 - Krasil’nikov, A.I. (2013). Class non-Gaussian distributions with zero skewness and kurtosis. Radioelectronics and Communications Systems, 56(6), 312-320.
https://doi.org/10.3103/S0735272713060071 - Krasilnikov, A.I. (2017). Class of Non-Gaussian Symmetric Distributions with Zero Coefficient of Elektronnoie modelirovaniie, 39(1), 3-17.
https://doi.org/10.15407/emodel.39.01.003 - Krasylnikov, O.I. (2023). Classification of models of two-component mixtures of symmetrical distributions with zero kurtosis coefficient. Elektronne modeliuvannia, 45(5). 20-
https://doi.org/10.15407/emodel.45.05.020 - Barakat, H.M. (2015). A new method for adding two parameters to a family of distributions with application to the normal and exponential families. Statistical Methods & Applications, 24(3), 359-372.
https://doi.org/10.1007/s10260-014-0265-8 - Krasilnikov, A.I. (2020). Analysis of Cumulant Coefficients of Two-component Mixtures of Shifted Gaussian Distributions with Equal Variances. Elektronnoie modelirovanie, 42(3), 71-88.
https://doi.org/10.15407/emodel.42.03.071 - Barakat, H.M., Aboutahoun, A.W. & El-kadar, N.N. (2019). A New Extended Mixture Skew Normal Distribution, With Revista Colombiana de Estadstica, 42(2), 167-183.
https://doi.org/10.15446/rce.v42n2.70087 - Krasilnikov, A.I. (2018). The Application of Two-Component Mixtures of Shifted Distributions for Modeling Perforated Random Variables. Elektronnoie modelirovaniie, 40(6), 83-98.
https://doi.org/10.15407/emodel.40.06.083 - Krasilnikov, A.I. (2018). The Application of Two-Component Mixtures of Shifted Distributions for Modeling Perforated Random Variables. Elektronnoie modelirovaniie, 40(6), 83-98.
https://doi.org/10.15407/emodel.40.06.083 - Krasylnikov, O.I. (2021). Analysis of Cumulant Coefficients of Two-Component Mixtures of Shifted Non-Gaussian Distributions. Elektronne modeliuvannia, 43(5), 73-92.
https://doi.org/10.15407/emodel.43.05.073 - Vadzinskii, R.N. (2001). Spravochnik po veroiatnostnym raspredeleniiam [Directory on Probabilistic Distributions]. St. Petersburg: Nauka. (in Russian).