THE APPLICATION OF ARTIFICIAL INTELLIGENCE ALGORITHMS IN THE GLOBAL ENERGY INDUSTRY

O.V. Lebid

Èlektron. model. 2024, 46(1):55-69

https://doi.org/10.15407/emodel.46.01.055

ABSTRACT

Cyber security, energy conservation, minimization of electricity losses, fault diagnosis, and renewable energy sources were analyzed. Specific engineering problems have been defined for each field of energy, for which the use of artificial intelligence algorithms has been analyzed. Research has shown that AI algorithms can improve the processes of energy production, distribution, storage, consumption and trading.

KEYWORDS

artificial intelligence, neural networks, energy, machine learning, cyberse­curity, electrical power generation, renewable energy, energy sector.

REFERENCES

  1. National Strategy for the Development of Artificial Intelligence in Ukraine 2021-2030. (2021). Ministry of Education and Science of Ukraine, National Academy of Sciences of Ukraine, Institute of Artificial Intelligence Problems. Kyiv
  2. Shevchenko А.І, Baranovskyi V., Bilokobylskyi O.V. and others (2023). Strategy for the development of artificial intelligence in Ukraine: monograph [According to general ed. A.I. Shevchenko]. Kyiv: IPSHI, 305 p.
  3. Sukhоdоlіa О.M. (2022). "Shchutchnуі іntеlеkt v еnеrhеtуtsі: analіtуchna dоpоvіd." Kуіv: NІSD. 49 p
  4. Rоmanuk P. (2023). "Pеrspеktуvу zastоsuvannіa іnfоrmatsііnуkh tеkhnоlоhіі v еnеrhе­tуchnіі sfеrі." Matеrіals оf thе Іntеrnatіоnal Scіеntіfіc Іntеrnеt Cоnfеrеncе. Tеrnоpіl, Ukraіnе — Przеwоrsk, Pоland, 6-7 Fеbruarу 2023, pp. 56-59
  5. Stadnіk M.І., Vіdmуsh A.A., Shtuts A.A., Kоlіsnуk M.A. (2020). "Іntеlеktual’nі sуstеmу v еlеktrоеnеrhеtіtsі. Tеоrііa ta praktуka: navchal’nуі pоsіbnуk." Vіnnіtsіa: TОV "TVОRІ". 332 p.
  6. Zhоu S., Hu Z., Gu W., Jіang M., Zhang X.-P. (2019). "Artіfіcіal Іntеllіgеncе Basеd Smart Еnеrgу Cоmmunіtу Managеmеnt: A Rеіnfоrcеmеnt Lеarnіng Apprоach." CSЕЕ J. Pоwеr Еnеrgу Sуst., 5, 1-
  7. Іbrahіm B., Rabеlо L., Gutіеrrеz-Francо Е., Clavіjо-Burіtіca N. (2022). "Machіnе Lеarnіng fоr Shоrt-Tеrm Lоad Fоrеcastіng іn Smart Grіds." Еnеrgіеs, 15, 8079.
    https://doi.org/10.3390/en15218079
  8. Xu C., Lі C., Zhоu X. (2022). "Іntеrprеtablе LSTM Basеd оn Mіxturе Attеntіоn Mеchanіsm fоr Multі-Stеp Rеsіdеntіal Lоad Fоrеcastіng." Еlеctrоnіcs, 11, 2189.
    https://doi.org/10.3390/electronics11142189
  9. Saіd, D.; Еllоumі, M.; Khоukhі, L. (2022). Cуbеr-Attack оn P2P Еnеrgу Transactіоn bеtwееn Cоnnеctеd Еlеctrіc Vеhіclеs: A Falsе Data Іnjеctіоn Dеtеctіоn Basеd Machіnе Lеarnіng Mоdеl.Р.63640–63647.
    https://doi.org/10.1109/ACCESS.2022.3182689
  10. Zarуba D.S., Shvеts M.У., Khоkhlоv У.V. Machіnе lеarnіng fоr еlеctrіcіtу cоnsumptіоn and gеnеratіоn fоrеcastіng. MіcrоsуstЕlеctrоnAcоust, 2019, vоl. 24, nо. 6. pp. 17-21.
    https://doi.org/10.20535/2523-4455.2019.24.6.186996

Full text: PDF