SOLVING THE PROBLEM OF OPERATING VARIABLES IDENTIFICATION IN THE MODELS OF NATURAL SYSTEM DYNAMICS

A.V. Mayevskyi

Èlektron. model. 2018, 38(2):105-116
https://doi.org/10.15407/emodel.38.02.105

ABSTRACT

A necessity is substantiated to replace the logistic function in the mathematical models of «predator-prey» natural systems with the function suggested as a solution for the first-order non-linear differential equation that builds a generalized model of natural system evolution.

KEYWORDS

logistic function, generalized model of natural system evolution, differential equation, operating variables identification.

REFERENCES

1. Bigon, M., Harper, J. and Townsend, C. (1989), Ekologiya: osobi, populyatsii i soobschestva [Ecology: individuals, populations and communities], in 2 vol., Vol. 1., Translated by Gilyarov, A.M., Mir, Moscow, Russia.
2. Pilkevych, I.A. (2012), Modelyuvannya i prognozuvannya dynamiki chiselnosti myslyvskykh tvaryn [Modeling and prediction of game population number dynamics], ZhDU im. I. Franko, Zhytomyr, Ukraine.
3. Riznichenko, G.Yu. and Rubin, A.B. (1993), Matematicheskie modeli biologicheskikh produktsionnykh protsessov [Mathematical models of biologic production processes], MGU, Moscow, Russia.
4. Grabar, I.G., Timonin, Yu.A. and Brodsky, Yu.B. (2009), “Universal model systems: methodological aspect”, Visnyk ZhNAEU: Naukovo-teoret. zb., no. 1, pp. 358-366.
5. Timonin, Yu.O. (1999), “Principles of energy interaction systems”, Visnyk ZhITI, no. 9, pp. 150-155.
6. Riznichenko, G.Yu. and Rubin, A.B. (2004), Biofizicheskaya dinamika produktsionnykh protsesov. Seriya: Matematicheskaya biologiya, biofizika [Biophysical dynamics of production processes. Series: Mathematical biology, biophysics], Izhevsk Institute for Computer Studies, Izhevsk, Russia.
7. Tikhonov, A.N. and Samarskiy, A.A. (1966), Uravneniya matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, Russia.

Full text: PDF (in Russian)