WAYS TO REDUCE THE COMPLEXITY OF CALCULATIONS WHEN CALCULATING FLOW DISTRIBUTION IN INCOMPRESSIBLE FLUID NETWORKS WITH FIXED COEFFICIENTS OF HYDRAULIC RESISTANCE

S.D. Vynnychuk

Èlektron. model. 2024, 46(5):19-34

https://doi.org/10.15407/emodel.46.05.019

ABSTRACT

Based on the analysis of the process of solving the problem of flow distribution calculation in compressible fluid systems, which boils down to finding the root of a nonlinear system of equations using the Newton — Raphson method, methods of reducing the complexity of calculations at the stages of the iterative process are proposed. The studies belong to the class of hydraulic systems for which the total pressure change on the branch elements is a monotonic smooth function of the flow rate G. For the iterations of the Newton-Raphson method, the stages are analyzed: linearization of the nonlinear system of equations, determination of the discrepancy and error estimation, determination of cost growth and obtaining a new iterative cost value. A method and algorithm for determining the discrepancy and estimating the error with linear complexity relative to the number of branches of graph E is proposed. A method of reducing the number of unknowns in the system of flow distribution equations at the stage of forming a system of linear equations based on the use of the nodal convolution method is described. A number of variants of heuristic algorithms for determining the parameter that takes into account the rate of increase in costs when forming a new iterative value of costs and their analysis are presented.

KEYWORDS

hydraulic network, system of flow distribution equations, initial approximation, Newton — Raphson method.

REFERENCES

  1. Nekrasov B.B. (1967) Gidravlika i yeye ispol’zovaniye na letatel’nykh apparatakh. [Hydraulics and its application on aircraft], Mashinostroyeniye, Moscow, Russia. 352 p.
  2. Yevdokimov A.G., Tevyashev A.D., Dubrovskiy V.V. (1979) Potokoraspredeleniye v inzhenernykh setyakh. / Pod red. G. Yevdokimova. [Flow distribution in engineering networks], Stroyizdat, Moscow, Russia. 199 p.
  3. Yevdokimov, A.G., Tevyashev, A.D. and Dubrovskiy, V.V. (1990), Modelirovanie i optimizatsiya potokoraspredeleniya v inzhenernykh setyakh, 2-e izd. pererab. i dop. [Modelling and optimization of load flow in engineering networks, 2nd ed., revised. and ext.], Stroyizdat, Moscow, Russia. 368 p.
  4. Merenkov, A.P. and Khasilev, V.Ya. (1985), Teoriya gidravlicheskikh tsepey [Theory of hydraulic circuits], Nauka, Moscow, Russia. 280 p.
  5. Merenkov, A.P., Sennova, Ye.V., Sumarokov S.V. et al. (1992) Matematicheskoye modelirovaniye i optimizatsiya sistem teplo-vodo-nefte- i gazosnabzheniya. [Mathematical modeling and optimization of heat, water, oil and gas supply systems], PO Nauka, Novosibirsk, Russia. 407 p.
  6. Bakhvalov N.S. (1975) Chislennyye metody (analiz, algebra, obyknovennyye differentsial’nyye uravneniya). [Numerical methods (analysis, algebra, ordinary differential equations)], “Nauka”. Glavnaya redaktsiya fiziko-matematicheskoy literatury, Moscow, Russia. 691 p.
  7. Charles F. Van Loan. (2013) Matrix Computations. 4. М: The Johns Hopkins University Press. 756 p. (англ.)
  8. Davis T.A. (2006.) Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms). Society for Industrial and Applied Mathematics. 218 p. (англ.)
    https://doi.org/10.1137/1.9780898718881
  9. Gantmakher F.R. (1988) Teoriya matrits. 4-ye izd. dop. [Matrix Theory. 4th ed. suppl.], Nauka, Moscow, Russia. 548 p.
  10. Godlevsky V.S., Godlevsky V.V. (2003) “Blochnyy gibridnyy metod resheniya sistem nelineynykh konechnykh uravneniy/ // Electronic Modeling. 2003. V. No. 3. Pp. 99-109.
  11. Vynnychuk S.D. (2000) Universalnyy algoritm avtomatizirovannogo formirovaniya nachalnogo raspredeleniya raskhodov v raspredelitelnykh setyakh. Zbirnyk “Modelyuvannya ta ínformatsíyní tekhnologíí̈”. 5. Kiyv: ÍPME NAN Ukrainy. Pp 3-9.
  12. Kapitonova Yu.V., Krivy S.L., Letichevsky O.A., Lutsky G.M., Pechorin M.K. (2002) Osnovy diskretnoí̈ matematyky. [Fundamentals of discrete mathematics.], “Naukova Dumka”, Kyiv, Ukraina. 580 p.
  13. Thomas Cormen, Charles. Leiserson, Ronald L. Rivest (2005). Algoritmy: postroyeniye i analiz, 2-ye izdaniye.: Per. s angl. [Introduction to Algorithms is a book by Edition 2], Vi­liams, Moscow, 1296 p.
  14. Vynnychuk S.D. (2016) Definition of flow distribution in networks with a tree graph. // Electron. modeling. V. 38, No. 4. 2016. Pp. 65-80. 
    https://doi.org/10.15407/emodel
  15. Vynnychuk, S.D. (2006), “Methods and algorithms for solving problems of analysis, designand management of distribution flows in the hydraulic distribution systems”, Abstract of Dr. Sci. (Tech.) dissertation, 01.05.02., Pukhov Institute for Modeling in Energy Engineering of National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Full text: PDF