MODEL OF ELECTROMAGNETIC FIELD FORMATION IN CLOSED SPACE CONDITIONS, ANALYSIS OF FACTORS INFLUENCING ITS FORMATION

A.L. Berezkin

Èlektron. model. 2020, 42(4):15-30
https://doi.org/10.15407/emodel.42.04.015

ABSTRACT

On the example of mine drifts the factors and conditions influencing formation of an electromagnetic field and propagation of electromagnetic waves in closed spaces are considered. The analysis of known publications of researches on this subject is carried out. The principles of estimating the influence of these factors from the point of view of classical models of electromagnetic wave propagation on the formation of the electromagnetic field at a given point of closed space are proposed. On the basis of which the mathematical model of formation of an electromagnetic field at the set point is offered. The zonal Fresnel type of electromagnetic field distribution is determined on the example of mine drifts. Methods for simplifying the construction of a mathematical model of the electromagnetic field are proposed, which reduces the number of analyzed factors but does not affect the overall quality of the model. The significance of the developed model from the point of view of introduction of new radio communication systems at large industrial facilities is proved.

KEYWORDS

radio wave propagation, multipath propagation, mathematical model, diffraction, interference, radio wave propagation.

REFERENCES

  1. Gepko, I.A., Oleynik, V.F. and Chayka, YU.D., Bondarenko A.V. (2009), Sovremennyye besprovodnyye seti: sostoyaniye i perspektivy razvitiya [Modern wireless networks: status and development prospects], Izd. dom “Ekmo”, Kiev, Ukraine.
  2. Feyer, K. (2000), Besprovodnaya tsifrovaya svyaz'. Metody modulyatsii i rasshireniye spektra [Wireless digital communication. Modulation methods and spectrum spreading], Radio i svyaz', Moscow, Russia.
  3. Baskakov, S.I. (1992), Elektrodinamika i rasprostraneniye radiovoln [Electrodynamics and radio wave propagation], Vysshaya shkola, Moscow, Russia.
  4. Bredov, M.M., Rumyantseva, V.V. and Toptygin, I.N. (1986), Klassicheskaya elektrodinamika [Classical electrodynamics], Nauka, Moscow, Russia.
  5. Brekhovskikh, L.M. (1973), Volny v sloistykh sredakh. Izd. vtoroye Waves in layered [Waves in layered media. Ed. second], Nauka, Moscow, USSR.
  6. Goldshteyn, L.D. and Zernov, N.V. (1971), Elektromagnitnyye polya i volny. Izd. vtoroye [Electromagnetic fields and waves. Ed. second], Sov. radio, Moscow, USSR.
  7. Hrudynska, H.P. (1975), Rasprostraneniye radiovoln [Radio wave propagation], Vysshaya shkola, Moscow, USSR.
  8. Kubanov, V.P. (2013), Vliyaniye okruzhayushchey sredy na rasprostraneniye radiovoln. Ucheb. posobiye [The influence of the environment on the propagation of radio waves. Textbook allowance], PSUTI, Samara, Russia.
  9. Lebedev, I.V. (1970), Tekhnika i pribory SVCH. T.1 [Microwave equipment and devices. T.1], Vysshaya shkola, Moscow, USSR.
  10. Rabinovich, M.I. and Trubetskov, D.I. (1992), Vvedeniye v teoriyu kolebaniy i voln. Izd. vtoroye [Introduction to the theory of oscillations and waves. Ed. second], Nauka, Russia.
  11. Rid, M. and Saymon, B. (1982), Metody sovremennoy matematicheskoy fiziki. T.3. Teoriya rasseivaniya [Methods of modern mathematical physics. T.T. Scattering theory], Mir, USSR.
  12. Nikol'skiy, V.V. and Nikol'skaya, T.I. (1989), Elektrodinamika i rasprostraneniye radiovoln [Electrodynamics and radio wave propagation], Nauka, USSR.
  13. Tikhonov, V.I. and Bakayev, YU.N. (1978), Statisticheskaya teoriya radiotekhnicheskikh ustroystv [Statistical Theory of Radio Engineering Devices], VVIA im. prof. N.Ye. Zhukovskogo, Moscow, USSR.
  14. Feynberg, Ye.L. (1999), Rasprostraneniye radiovoln vdol' zemnoy poverkhnosti. Izd. vtoroye [Propagation of radio waves along the earth's surface. Ed. second], Nauka Fizmatlit, Moscow, Russia.
  15. Chernyy, F.B. (1972), Rasprostraneniye radiovoln. Izd. vtoroye [Propagation of radio waves. Ed. second], Sov. radio, Moscow, USSR.
  16. Ryazantsev, A.M. (2017), “Experimental studies of the propagation of electromagnetic waves of ultra-low frequencies in the earth's crust and the earth-ionosphere waveguide, performed by the Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS”, Zhurnal radioelektroniki: elektronnyy zhurnal, 12.
  17. Alfred, G.E, Robert, L.L. and Peter, F. (1975), “Strong Theory sf the Propagation sf UHF Radio Waves in Coal Mine Tunnels”, IEEE transactions on antennas and propagation, Vol. AP-23, no. 2, pp.192-205.
    https://doi.org/10.1109/TAP.1975.1141041
  18. Avdeyev, V.B., Avdeyeva, D.V., Katrusha, A.N. and Makarov, G.V. (2004), Vol. 47, no. 3-4, pp. 70-76.
  19. Zhou, C., Waynert, J., Plass, T. and Jacksha, R. (2013), “Attenuation constants of radio waves in lossy-walled rectangular waveguides”, Progress in Electromagnetics Research, Vol. 142, pp. 75-105.
    https://doi.org/10.2528/PIER13061709
  20. Zhou, C., Waynert, J., Plass, T. and Jacksha, R. (2013), “Modeling RF Propagation in Tunnels”, Conference Proceeding of the IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, Orlando, FL, pp. 1916-1917.
    https://doi.org/10.1109/APS.2013.6711616
  21. Jacksha, R. and Zhou, C. (2016), “Measurement of RF propagation around corners in underground mines and tunnels”, Trans Soc Min Metall Explor Inc, Vol. 340, no. 1, pp. 30-37.
    https://doi.org/10.19150/trans.7324
  22. Boutin, M., Benzakour, A. and Charles, L. (2008), “Despins Radio Wave Characterization and Modeling in Underground Mine Tunnels”, IEEE Transactions on antennas and propagation, Vol. 56, no. 2.
    https://doi.org/10.1109/TAP.2007.913144
  23. Plass, T., Jacksha, R., Waynert, J. and Zhou, C. (2013), “Measurement of RF Propagation in Tunnels”, Conference Proceeding of the IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, Orlando, FL, pp. 1604-1605.
    https://doi.org/10.1109/APS.2013.6711461
  24. (2005), “Propagation of radio waves due to diffraction. ITU Radiocommunication Assembly”, МСЭ-R P.526-9, available at: https:// itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-9-200508-S!!PDF-R.pdf (accessed July 13, 2020).
  25. (2013), “Propagation data and prediction methods required for the design of terrestrial line of sight systems. Series P. Propagation of radio waves. © ITU”, available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.530-15-201309-S!!PDF-R.pdf (acces­sed July 13, 2020).
  26. (2002), “HANDBOOK Terrestrial land mobile radiowave propagation in the VHF/UHF bands. © ITU”, available at: http://www.itu.int/pub/R-HDB-44/ru (accessed July 13, 2020).
  27. Jian, L. (2011), “Advanced Electrical and Electronics Engineering”, Springer-Verlag, Vol. 2.
  28. William, C.Y.L. (1993), “Mobile Communications Design Fundamentals. Second Edition”, John Wiley & SONS.

Full text: PDF