Yu.D. Polissky
Èlektron. model. 2017, 39(4):105-114
https://doi.org/10.15407/emodel.39.04.105
ABSTRACT
New approaches to the implementation of the problem operations in the system of residue classes — modular exponentiation and discrete taking the logarithm — have been stated. The approaches are based on tabular implementation of these operations. In this case the data are sampled from the tables, pre-prepared for the taken system of modules, followed by processing of the selected data according to certain algorithms.
KEYWORDS
residue classes, problem operations, modules, discrete logarithm.
REFERENCES
1. Akushskiy, I.Ya. and Yuditskiy, D.I. (1968), Mashinnaya arifmetika v ostatochnykh klassakh [Machine arithmetic in the residual classes], Sovetskoe radio, Moscow, USSR.
2. Vasilenko, O.N. (2003), Teoretiko-chislovyie algoritmy v kriptografii [Theoretical-numerical algorithms in cryptography], MTsNMO, Moscow, Russia.
3. Rozhkov, A.V. and Nissenbaum, O.V. (2007), Teoretiko-chislovyie metody v kriptografii: Uchebnoe posobie [Theoretical-numerical methods in cryptography: Manual], Izdatelstvo Tyumenskogo gosudarstvennogo universiteta, Tyumen, Russia.
4. Maizakov, M.A. (2010). “Development of modules for automatic generation of tasks with solutions concerning the subject Discrete Logarithm", Graduation Thesis, Tyumen State University, Tyumen, Russia.
5. Chervyakov, N.I., Babenko, M.G., Kiyashko, E.S. and Shulzhenko, K.S. (2013), “Solution of the problem of taking discrete logarithm with the use of the residue class system, available at: // http://hpc-education.unn.ru/files/conference_hpc/2013/files/62.pdf.
6. Polissky, Yu.D. (2016), “On the transformation of representation of numbers in residues from one modular system to another”, Nauka ta progress transportu, Visnyk Dnipropetrovskogo natsionalnogo universitetu zaliznychnogo transportu imeni akad. V. Lazaryana, Vol. 3, no. 63, pp. 130-137.