THREE-DIMENSIONAL CONCEPT OF CRITICAL ENERGY INFRASTRUCTURE RISK ANALYSIS

V.V. Shkarupylo, O.A. Chemerys, T.A. Zaiko, D.O. Dimitriieva, V.V. Shkarupylo

Èlektron. model. 2025, 47(1):101-115

https://doi.org/10.15407/emodel.47.01.101

ABSTRACT

A three-dimensional concept of energy infrastructure risk analysis has been developed. Named infrastructure is considered as a distributed safety-critical system. The result of the analysis conducted in accordance with the principles of the introduced concept is a taxonomy of the contemporary means focused on decreasing the level of risks taking place in critical distributed energy infrastructure, including the cyber risks in particular. Named taxonomy, in turn, is intended to serve as a background for developing an effective strategy for ensuring the resilience of energy infrastructure. Taking into consideration the circumstances Ukraine currently faces, caused by the unprovoked full-scale invasion of the aggressor from the East, the specified problem is of significant importance.

Obtained research results provide the grounding to consider that the share of cyber threats is growing nowadays. This, in turn, determines the importance of developing a contemporary strategy focused on delivering the resilience of energy infrastructure.

KEYWORDS

energy infrastructure, concept, cyber-physical system, event, resilience, risks, safety-critical system, stratification.

REFERENCES

  1. Schlör, H., & Venghaus, S. (2022). Measuring resilience in the food-energy-water nexus based on ethical values and trade relations. Applied Energy, 323. 
    https://doi.org/10.1016/j.apenergy.2022.119447
  2. Pricop, -I., Gavrilaş, M., Sǎlceanu, A., & Neagu, B.-C. (2023). Power systems resilience against cyber-attacks. A systematic analysis. 2023 10th International Conference on Mo­dern Power Systems, MPS 2023
    https://doi.org/10.1109/MPS58874.2023.10187420
  3. Nikolaieva, I., & Zwijnenburg, W. (2022). Risks and impacts from attacks on energy infrastructure in Ukraine. PAX report. https://paxforpeace.nl/wp-content/uploads/sites/2/import/2023-01/PAX_Ukraine_energy_infrastructure_FIN.pdf
  4. International Atomic Energy Agency. (2024). Update 261 — IAEA Director General Statement on Situation in Ukraine. https://www.iaea.org/newscenter/pressreleases/update-261-iaea-director-general-statement-on-situation-in-ukraine
  5. 2017 National baseline report. (2017). Sustainable Development Goals: Ukraine. https://www.undp.org/sites/g/files/zskgke326/files/migration/ua/SDGs_NationalReportEN_Web.pdf
  6. Department of Economic and Social Affairs, United Nations. (2023). Ensure access to affordable, reliable, sustainable and modern energy for all. https://sdgs.un.org/goals/goal7
  7. Linkov, I. et al. (2014). Changing the resilience paradigm. Nature Climate Change, 4, 407-409.
    https://doi.org/10.1038/nclimate2227
  8. (2023, December 5). The Ukrainian energy system is synchronized with the European network. https://energysecurityua.org/news/the-ukrainian-energy-system-finalized-synchronization-with-the-european-network/
  9. Raya-Tapia, Y., Ramírez-Márquez, C., & Ponce-Ortega, J.M. (2024). Country typologies according to the impact of geopolitical and health crises on the energy-food nexus. Process Integration and Optimization for Sustainability, 8(4), 1223-1236. 
    https://doi.org/10.1007/s41660-024-00427-1
  10. Liu, Y., & Wang, J. (2024). Risk analysis and resilience assessment of China's oil imports after the Ukraine crisis: a network-based dynamics model. Energy, 299. 
    https://doi.org/10.1016/j.energy.2024.131502
  11. Chen, , Pan, L., & Zhang, K. (2024). The dynamic cointegration relationship between international crude oil, natural gas, and coal price. Energies, 17(13). 
    https://doi.org/10.3390/en17133126
  12. Mišík, , & Nosko, A. (2023). Post-pandemic lessons for EU energy and climate policy after the russian invasion of Ukraine: Introduction to a special issue on EU green recovery in the post-Covid-19 period. Energy Policy, 177. 
    https://doi.org/10.1016/j.enpol.2023.113546
  13. Shulzhenko, S., Kostyukovskyi, B., Maliarenko, O., Makarov, V., & Bilenko, M. (2023). Thermal power plants’ coal stock short term projection method for ensuring national energy security. In A. Zaporozhets (Eds). Systems, Decision and Control in Energy IV. Studies in Systems, Decision and Control (pp. 279-289). 454. Springer, Cham. 
    https://doi.org/10.1007/978-3-031-22464-5_16
  14. Sampedro, et al. (2024). Energy system analysis of cutting off russian gas supply to the European Union. Energy Strategy Reviews, 54. 
    https://doi.org/10.1016/j.esr.2024.101450
  15. (2024, November 16). Russia cuts gas to Austria in payment dispute. https://www<span< a=""> style="letter-spacing: .1pt;">.reuters.com/business/energy/russian-gas-exports-via-ukraine-europe-stable-despite-austria-cuts-2024-11-16/</span<>
  16. (2025, January 1). Russian gas era in Europe ends as Ukraine stops transit. https://www.reuters.com/business/energy/russia-halts-gas-exports-europe-via-ukraine-2025-01-01/
  17. Ye, W., & Chaiyapa, W. (2024). Impact of governance on resilience in the energy transition. An analysis of China and Germany. Utilities Policy, 87. 
    https://doi.org/10.1016/j.jup.2024.101732
  18. Hrytsiuk, I., Volynets, V., Komenda, N., Hrytsiuk, Yu., & Hadai, A. (2024). Modelling the optimal switching scheme of the Ukrainian power grid during blackout (Volyn region). Machinery & Energetics, 15(2), 95-105. 
    https://doi.org/10.31548/machinery/2.2024.95
  19. Saukh, S.Ye. (2023). Concept of building a structurally variable power system of Ukraine. Technical Electrodynamics, 2023(5), 48-54. 
    https://doi.org/10.15407/techned2023.05.048
  20. Shkarupylo, V.V., Dusheba, V.V., & Chemerys, O.A. (2024). Shchodo tryvymirnoi kontseptsii opratsiuvannia rezyliientnosti enerhetychnoi infrastruktury. VІ Scientific practical conference of the G.E. Pukhov Institute for Modeling in Energy Engineering National Academy of Sciences of Ukraine (pp. 176-177). PIMEE of NAS of Ukraine. https://doi.org/10.5281/zenodo.14554063
  21. Mesarovic, M.D., Macko, D., & Takahara, Y. (1970). Theory of hierarchical, multilevel, systems. New York, Academic Press.
  22. Shkarupylo, V.V., Chemerys, O.A., & Dusheba, V.V. (2024). Stratyfikovanyi pidkhid do opratsiuvannia rezyliientnosti u haluzi enerhetyky. Collection of materials of the XLІI Scientific and technical conference of young scientists and specialists of G.E. Pukhov Institute for Modelling in Energy Engineering of National Academy of Sciences of Ukraine (pp. 54-55). PIMEE of NAS of Ukraine. https://ipme.kiev.ua/konferencii/konferenciya-molodix-vchenix-2024/
  23. Shkarupylo, V.V., Dusheba, V.V., & Timenko, A.V. (2023). Ohliad rivniv zabezpechen­nia rezyliientnosti u haluzi enerhetyky. Survivability & Resilience — 2023: collection of materials of the international scientific and practical conference (pp. 33-34). PIMEE of NAS of Ukraine. https://ipme.kiev.ua/konferencii/zhivuchist-ta-rezilyentnist-2023/
  24. Shkarupylo, V.V., Kudermetov, R.K., & Polska, O.V. (2018). On the approaches to cyber-physical systems simulation. Advances in Cyber-Physical Systems (ACPS), 3(1), 51-54. 
    https://doi.org/10.23939/acps2018.01.051
  25. Parus, E.V., Blinov, I.V., & Olefir, D.O. (2023). Daily optimization of a working schedule of the hydropower plant on the "day ahead" market. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 64, 16-24. 
    https://doi.org/10.15407/publishing2023.64.016
  26. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: abstraction and reuse of object-oriented design. In Nierstrasz, O.M. (Eds.). ECOOP’ 93 — Object-Oriented Programming. ECOOP 1993. Lecture Notes in Computer Science (pp. 406-431). 707. Springer, Cham. 
    https://doi.org/10.1007/3-540-47910-4_21
  27. Concepcion, A. I., & Zeigler, B. P. (1988). DEVS formalism: a framework for hierarchical model development. IEEE Transactions on Software Engineering, 14(2), 228-241. 
    https://doi.org/10.1109/32.4640
  28. Shkarupylo,V., Dusheba, V.V., Skrupsky, S.Yu., & Blinov, I.V. (2022). Stratified model of safety-critical system non-functional properties representation at design. Èlektron. model., 44(2), 90-106. 
    https://doi.org/10.15407/emodel.44.02.090
  29. Shkarupylo, V., Chemerys, O., Artemchuk, V., Alsayaydeh, J., Kudermetov, R., & Polska, O. (2024). Comprehensive stratified approach to energy resilience solutions taxonomy: a Ukraine scenario. 14th International Conference on Dependable Systems, Services and Technologies.

Full text: PDF