SUM OF INCREMENT MAXIMA IN A MULTICHANNEL SERVICE SYSTEM WHEN MODELING AUCTION

A.V. Makarichev, A.A. Kud, A.B. Shchukin

Èlektron. model. 2017, 39(5):97-104
https://doi.org/10.15407/emodel.39.05.097

ABSTRACT

For the input stream with a variable parameter put in the systemwith unlimited service the probability distributions and numerical characteristics for the sums of maxima of the requirement increments received and served in a finite period of time were found in terms of characteristic functions.

KEYWORDS

distribution of sums of maxima.

REFERENCES

1. Khinchin, A.Ya. (1963), Raboty po matematicheskoi teorii massovogo obsluzhivaniya [Works on mathematical queuing theory], Fizmatgiz, Moscow, USSR.
2. Gnedenko, B.V. and Kovalenko, I.N. (1987), Vvedenie v teoriyu massovogo obsluzhivaniya [Introduction to queueing theory], Nauka, Moscow, USSR.
3. Klimov, G.P. (1966), Stokhasticheskie teorii obsluzhivaniya [Stochastic service systems], Nauka, Moscow, USSR.
4. Solovyov, A.D. (1971), “The asymptotic behavior of the occurrence of the rare event in the regenerating process”, Izvestiya AN SSSR, Tekhnicheskaya kibernetika, no. 6, pp. 79-89.
5. Barzilovich, E.Yu., Belyaev, Yu.K., Kashtanov, V.A., Kovalenko, I.N., Solovyov, A.D. and Ushakov, I.A. (1983), Voprosy matematicheskoi teorii nadezhnosti [Problems of mathematical theory of reliability], Ed. Acad. B.V. Gnedenko, Radio i svyaz, Moscow, USSR.
6. Shiryaev, A.N. (1980), Veroyatnost [Probability], Nauka, Moscow, USSR.

Full text: PDF (in Russian)