EFFICIENT ALGORITHMS FOR SOLVING EQUATIONS OF ISOMORPHIC HYPERCOMPLEX DIGITAL SYSTEMS WITH THE HELP OF PRESENTED EXPONENTS

Ya.A. Kalinovsky

Èlektron. model. 2017, 39(1):75-90
https://doi.org/10.15407/emodel.39.01.075

ABSTRACT

This paper presents a method for constructing isomorphic hypercomplex digital systems with the help of analysis of presentation of exponential functions in these systems. It is shown that such an approach increases considerably the efficiency of algorithms for solving the sets of equations of isomorphism.

KEYWORDS

hypercomplex digital system, isomorphism, exponent, a set of equations of isomorphism, isomorphism operator.

REFERENCES

1. Bleykhut, R.E. (1989), Bystrye algoritmy tsifrovoi obrabotki signalov [Fast algorithms for digital signal processing], Mir, Moscow, Russia.
2. Nussbaumer, G. (1985), Bystroe preobrazovanie Furie i algoritmy vychisleniya svyortok [Fast Fourier transform and convolution computation algorithm], Radio i Svyaz, Moscow, Russia.
3. Kantor, I.L. and Soldovnikov, A.S. (1973), Giperkompleksnye chisla [Hypercomplex numbers], Nauka, Moscow, Russia.
4. Sinkov, M.V., Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2010), Konechnomernye giperkompleksnye chislovye sistemy. Osnovy teorii. Primeneniya [Finite-dimensional hypercomplex number systems. Fundamentals of the theory. Applications], Infodruk , Kyiv, Ukraine.
5. Sinkov, M.V., Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2009), Giperkompleksni chislovi systemy: osnovy teorii, praktychni vykorystannya, bibliografiya [Hypercomplex numerical systems: basic theory, practical application, references], Infodruk, Kyiv, Ukraine.
6. Chaitin-Chatelin, F., Meskauskas, T. and Zaoui, A. (2000), Computation with hypercomplex numbers, GERFACS Technical Report TR/PA/00/69, available at: http://www.gerfacs.fr. 
7. Kurosh, A.G. (1973), Lektsii po obshchey algebre [Lectures on general algebra], Nauka, Moscow, Russia.
8. Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2012), Vysokorazmernye izomorfnye giperkompleksnye chislovye sistemy i ikh ispolzovanie dlya povysheniya efektivnosti vychisleniy [High-dimensional isomorphic hypercomplex number systems and their use for efficiency increase of calculations], Infodruk, Kyiv, Ukraine.
9. Toyoshima, H. (2002), “Computationally efficient implementation of hypercomplex digital filters”, IEICE Trans. Fundamentals, Vol. E85-A, no. 8, pp. 1870-1876.
10. Sinkov, M.V., Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2007), Doslidzhennia ta vykorystannia giperkompleksnych chyslovych system v zadachach dynamiky, kinematyky ta koduvannia
informatsii zastosuvannia [Research and use of hypercomplex number systems in problems of dynamics, kinematics and coding of application information], Priorytety naukovoyi spivpraci DFFD i BRFFD, Biblioteka Derzhfondu fundamentalnych doslidzhen, pp. 21-34.
11. Kalinovsky, Ya.A., Lande, D.V., Boyarinova, Yu.E. and Khitsko, I. V. (2014), Giperkompleksnye chyslovye systemy i bystrye algoritmy tsifrovoy obrabotki informatsii [Hypercomplex number systems and fast algorithms for digital processing of information], IPRI NAN Ukrainy, Kyiv, Ukraine.
12. Kalinovsky, Ya.A. (2007), “Methods of computer modeling and calculations using hypercomplex number systems”, Dissertation of Dr. Sci. (Tech.), IRP NAN Ukrainy, Kyiv, Ukraine.
13. Sinkov, M.V., Kalinovsky, Ya.A. and Roenko, N.V. (1994), “Building nonlinear functions in quaternion and other hypercomplex number systems for the solution of applied mecanics problem”, Proc. of the First Int. Conf. on Parallel Processing and Appl. Math, Poland, pp. 170-177.
14. Kalinovsky, Ya.A., Roenko, N.V. and Sinkov, M.V. (1996), “Methods for constructing nonlinear extensions of complex numbers”, Kibernetika i sistemnyi analiz, no. 4, pp. 178-181.

Full text: PDF (in Russian)