MEASURE OF DIFFERENCE BETWEEN CLASSIFICATIONS

H.A. Kravtsov

Èlektron. model. 2018, 38(4):81-98
https://doi.org/10.15407/emodel.38.04.081

ABSTRACT

Methods for determining graph isomorphism are not applicable to determining isomorphism of classifications because of ignoring the indivisibility of certain classes of classification. At the same time structural similarity does not reflect the classification semantics that is very important in determining the measure of difference between the two classifications. The author proposes the concept of total correct classification and introduces the dual measures the difference reflecting the known problem of form and content in philosophy.

KEYWORDS

classification, completeness, correctness, measure, duality.

REFERENCES

1. Basipov, A.A. and Demich, O.V. (2012), “Semantic search: problems and technology”, Vestnik Astrakhanskogo gosudarstvennogo universiteta, Seria: Upravlenie, vychislitelnaya tekhnika i informatika, no. 1, pp. 104-111.
2. Boldachev, A. “Habrahabr: Conceptual description of individuals”, available at: https://habrahabr.ru/post/276271/ (assessed May, 2016).
3. Ivlev, Yu.V. (2008), Logika [Logic], TK Velbi, Prospekt, Moscow, Russia.
4. Shatalkin, A.I. (2012), Taksonomiya. Osnovaniya, printsipy i pravila [Taxonomy. Grounds, principles, and rules], Tovarishchestvo nauchnykh izdaniy KMK, Moscow, Russia.
5. Ushakov, D.N. (2005), Tolkovyi slovar russkogo yazyka [Explanatory dictionary of the Russian language], Alta-Print, Moscow, Russia.
6. Vyugin, V. (2013), Matematicheskie osnovy teorii mashinnogo obucheniya i prognozirovaniya [Mathematical grounds of the theory of computer teaching and prediction], MTsNMO, Moscow, Russia.
7. Goldblatt, R. (1983), Toposy. Kategornyi analiz logiki [Toposes. Category analysis of logic], Mir, Moscow Russia.
8. Alfs Berztiss (1974), Struktura dannykh [Data structure], Statistika, Moscow, Russia.
9. Karelina, E.V. (2012), Teoreticheskaya strogost kak sootvetstvie sistemy i metoda v filosofii [Theoretical strictness as correspondence of the system and method in philosophy], Siberian Federal University, Krasnoyarsk, Russia.
10. Korotkov, E.M. (2004), Issledovanie system upravleniya [Study of control systems], DeKA, Moscow, Russia.
11. Adamek, J., Herrlich, H. and Strecker, G.E. “Abstract and concrete categories. The Joy of Cats”, available at: http://katmat.math.uni-bremen.de/acc/acc.pdf. (accessed February, 2016).
12. Kravtsov, H.A. (2016), “Model of computations on classifications”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp.73-87.
https://doi.org/10.15407/emodel.38.01.073
13. Totsenko, V.G. (2002), Metody i sistemy podderzhki prinyatiya resheniy. Algoritmicheskiy aspect [Models and systems for decision making support], Naukova dumka, Kiev, Ukraine.
14. Agarkov, A.V. (2003), “Method of comparison of two graphs for polynomial time”, Iskusstvennyi intellect, no. 4, pp.172-184.
15. Bunke, H. (1997), “On a relation between graph edit distance and maximum common subgraph”, Pattern Recognition Letters, Vol. 18, pp. 689-694.
https://doi.org/10.1016/S0167-8655(97)00060-3
16. Messmer, B.T. and Bunke, H. “Subgraph Isomorphism in Polynomial Time”, University of Bern, Institut fur Informatik und angewandte Mathematik, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.870&rep=rep1&type=pdf. (accessed March, 2016).
17. Kasyanov, V.N. and Evstigneyev, V.A. (2003), Grafy v programmirovanii: obrabotka, vizualizatsiya, primenenie [Graphs in programming: processing, visualization and application], BHV-Petersburg, St.-Petersburg, Russia.
18. Lyuk, S. (2013), “Essentials of metaheuristics”, available at: http://qai.narod.ru/GA/metaheuristics.html (accessed May, 2016).
19. Semkin, B.I. and Gorshkov, M.V. (2008), “Axiomatic introduction of the measures of similarity, difference, compatibility and dependence for biodiversity components”, Izvestiya Dalnevostochnogo federalnogo universiteta. Ekonomika i upravlenie, no. 4, pp. 31-46.

Full text: PDF (in Russian)