METHODOLOGY FOR TRANSFORMING CODE SEQUENCES IN ACCORDANCE WITH THE MODULATION DISK COORDINATE SYSTEM

I.V. Kosyak, D.Yu. Manko, Ie.V. Belyak, A.A. Kryuchyn

Èlektron. model. 2024, 46(5):35-49

https://doi.org/10.15407/emodel.46.05.035

ABSTRACT

An analysis of current approaches used in the design of optical recording systems for modulation disks has been conducted. By adapting mathematical models, software algorithms were developed to transform code sequences represented in polar, homogeneous, and parametric coordinate systems, and the unique characteristics of each approach in developing a universal method for ensuring accurate and efficient modulation pattern transformation were established. It was noted that the polar coordinate system is the most suitable for practical applications in code sequence transformations. Its ability to effectively represent circular and symmetrical structures, as well as the convenient representation of objects with radial symmetry, provides advantages in the creation of modulation disks. As a result of the study, effective software solutions for automating data processing in the formation of modulation patterns were identified. The implementation of the developed software algorithms for the presented approach involves adapting the code sequence to the current metric within the design of an optical system based on modulation disks. The presented methodology ensures the ability to transform code sequences regardless of the chosen coordinate system, which significantly enhances its flexibility and versatility for practical applications.

KEYWORDS

modulation disks, code sequences, Cartesian coordinate system, polar coordinate system, parametric coordinate system, homogeneous coordinate system.

REFERENCES

  1. Patruno, C., Renò, V., Nitti, M., Pernisco, G., & Mosca, N. (2022). Optical encoder neural network: A CNN-based optical encoder for robot localization. Optical Engineering, 62(04). 
    https://doi.org/10.1117/1.OE.62.4.041402
  2. Hossain, M., Rakshit, J. K., & Pal Singh, M. (2022). Numerical Analysis of all-optical silicon microring resonator-based cyclic redundancy check encoder. Journal of Nanophoto­nics, 16(03). 
    https://doi.org/10.1117/1.JNP.16.036007
  3. Megalingam, R.K., Anil, S.A., & Varghese, J.M. (2016). FPGA based navigation platform for fixed path navigation with distance estimation using rotation encoder. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 3134-3138. 
    https://doi.org/10.1109/ICEEOT.2016.7755279
  4. Ali, B., Sadekov, R.N., & Tsodokova, V.V. (2022). A review of navigation algorithms for unmanned aerial vehicles based on Computer Vision Systems. Gyroscopy and Navigation, 13(4), 241-252. 
    https://doi.org/10.1134/S2075108722040022
  5. Seybold, J., Bülau, A., Fritz, K.-P., Frank, A., Scherjon, C., Burghartz, J., & Zimmermann, A. (2019). Miniaturized optical encoder with micro structured encoder disc. Applied Sciences, 9(3), 452. 
    https://doi.org/10.3390/app9030452
  6. Liu, S., Zhang, H.C., Zhang, L., Yang, Q.L., Xu, Q., Gu, J., Yang, Y., Zhou, X.Y., Han, J., Cheng, Q., Zhang, W., & Cui, T.J. (2017). Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Applied Materials & Interfaces, 9(25), 21503-21514. 
    https://doi.org/10.1021/acsami.7b02789
  7. Liu, S., & Cui, T.J. (2017). Flexible controls of terahertz waves using coding and programmable metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 23(4), 1-12. 
    https://doi.org/10.1109/JSTQE.2016.2599273
  8. Eberhardt, K., Esser, S., & Haider, H. (2017). Abstract feature codes: The building blocks of the implicit learning system. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1275-1290. 
    https://doi.org/10.1037/xhp0000380
  9. Cai, Y., Li, P., Li, X.-W., Zhao, J., Chen, H., Yang, Q., & Hu, H. (2017). Converting panax ginseng DNA and chemical fingerprints into two-dimensional barcode. Journal of Ginseng Research, 41(3), 339-346. 
    https://doi.org/10.1016/j.jgr.2016.06.006
  10. Feng, M., Li, Y., Zheng, Q., Zhang, J., Han, Y., Wang, J., Chen, H., Sai, S., Ma, H., & Qu, S. (2018). Two-dimensional coding phase gradient metasurface for RCS reduction. Journal of Physics D: Applied Physics, 51(37), 375103.
    https://doi.org/10.1088/1361-6463/aad5ad
  11. Feng, M., Chen, X., Li, Y., Zheng, Q., Han, Y., Zhang, J., Wang, J., Hou, Y., Liu, Z., Li, X., Wang, C., Jing, J., Ma, H., & Qu, S. (2020). Circularly polarized spin‐selectivity absorbing coding phase gradient metasurface for RCS reduction. Advanced Theory and Simulations, 3(3). 
    https://doi.org/10.1002/adts.201900217
  12. Yin, J., Wu, Z., & Deng, J. (2024). Shared‐Aperture 2‐bit coding metasurface for simultaneous manipulation of space wave and surface wave. Advanced Materials Technologies, 9(10). 
    https://doi.org/10.1002/admt.202302151
  13. Yin, T., Ren, J., Zhang, B., Li, P., Luan, Y., & Yin, Y. (2023). Reconfigurable transmission‐reflection‐integrated coding metasurface for full‐space electromagnetic wavefront Advanced Optical Materials, 12(2). 
    https://doi.org/10.1002/adom.202301326
  14. Wang, X., & Fu, F.-W. (2018). Gray codes over certain run-length sequences for local rank modulation. Science China Information Sciences, 61(10).
    https://doi.org/10.1007/s11432-018-9509-y

Full text: PDF