CODES WITH SUMMATION WITH A SEQUENCE OF WEIGHT COEFFICIENTS, FORMING A NATURAL SERIES OF NUMBERS, IN CONCURRENT ERROR DETECTION SYSTEMS

V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov

Èlektron. model. 2017, 39(5):37-58
https://doi.org/10.15407/emodel.39.05.037

ABSTRACT

Features of the class of modified weighted codes with summation with a sequence of weight coefficients forming a natural series of numbers are described. It is established that the properties of error detection by modified codes are significantly influenced by the method of calculating the correction factor for the formation of the total value of the weight of single bits of the information vector. Theoretical results are confirmed by the results of experiments with a set of test combinational circuits LGSynth`89. It is established that by changing the rules for calculating the correction factor for code modification, it is possible to have influence on the structural redundancy of the concurrent error detection systems. The obtained results can be effective in organization of the check of combinational logic circuits and allow building self-checked structures with less hardware costs in comparison with duplication.

KEYWORDS

combinational circuit, concurrent error detection system, Berger code, modified weighted Berger code, error detection, structural redundancy.

REFERENCES

1. McCluskey, E.J. (1986), Logic Design Principles: With Emphasis on Testable Semicustom Circuits, Prentice Hall PTR, New Jersey, USA.
2. Sogomonyan, E.S., and Slabakov, E.V. (1989), Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Self-checking devices and failover systems], Radio i svyaz, Moscow, Russia.
3. Fujiwara, E. (2006), Code design for dependable systems: Theory and practical applications, John Wiley & Sons, New Jersey, USA.
4. Drozd, A.V. (2008), “An untraditional view on operational diagnostics of computing devices”, Problemy upravleniya, no. 2, pp. 48-56.
5. Drozd, A.V., Kharchenko, V.S., Antoshchuk, S.G., et al. (2012), Rabocheye diagnostirovanie bezopasnykh informatsionno-upravlyayuschikh sistem [On-line testing of safe information and control systems], National Aerospace University «KhAI», Kharkov, Ukraine.
6. Zelenaya IT-inzheneriya. V dvuh tomah. Tom 1. Printsipy, modeli, komponenty [Green IT engineering. Vol. 1: Concepts, models, components], Ed. V.S. Kharchenko, National Aerospace University «KhAI», Kharkov, Ukraine.
7. Gorshe, S.S. and Bose, B. (1996), “A self-checking ALU design with efficient codes”, Proceedings of the 14th VLSI test symposium, Princeton, NJ, USA, pp. 157-161.
https://doi.org/10.1109/VTEST.1996.510851
8. Touba, N.A. and McCluskey, E.J. (1997), “Logic synthesis of multilevel circuits with concurrent error detection”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and System, Vol. 16, Jul., pp. 783-789.
https://doi.org/10.1109/43.644041
9. Nicolaidis, M. and Zorian, Y. (1998), On-Line Testing for VLSI – A Compendium of Approaches, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20.
https://doi.org/10.1023/A:1008244815697
10. Das, D. and Touba, N.A. (1999), “Synthesis of circuits with low-cost concurrent error detection based on Bose-Lin codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, Iss. 1-2, pp. 145-155.
https://doi.org/10.1023/A:1008344603814
11. Mitra, S. and McCluskey, E.J. (2000), Which concurrent error detections Scheme to choose?, Proceedings of International Test Conference, 2000, USA, Atlantic City, NJ, 03-05 October 2000, pp. 985-994.
https://doi.org/10.1109/TEST.2000.894311
12. Carter, W.C., Duke, K.A. and Schneider, P.R. (1971), Self-checking error checker for two-rail coded data, Jan. 26, 1971, United States Patent Office, No. 3,559,167, Peekskill, N.Y., 10 p.
13. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1992) Samoproveryaemye diskretnye ustroystva [Self-checking discrete devices], Energoatomizdat, St. Petersburg, Russia.
14. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., Dmitriev, V.V. and Khuan, C. (2016), “Optimal system code on the basis of weighing of information vector digits and summation without carry for the concurrent error detection systems”, Izvestiya Prterburgskogo universiteta putei soobshcheniya, no. 1, pp. 75-84.
15. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. I. Ability of modulo codes to detect error in data vectors”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 27-48.
16. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. II. Decrease of hardware redundancy of concurrent error detection systems”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 47-61.
17. Berger, J.M. (1961), “A note on error detecting codes for asymmetric channels”, Information and Control, Vol. 4, Iss. 1, pp. 68-73.
https://doi.org/10.1016/S0019-9958(61)80037-5
18. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2010) “On sum code properties in concurrent error detection systems”, Avtomatika i telemekhanika, no. 6, pp. 155-162.
19. Goessel, M., Morozov, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1997), “Investigation of combination self-testing devices having independent and monotone independent outputs”, Avtomatika i telemekhanika, no. 2, pp. 180-193.
20. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “Formation of the Berger modified code with minimum number of undetectable errors of data bits”, Elektronnoe modelirovanie, Vol. 34, no. 6, pp. 17-29.
21. Blyudov, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “A modified summation code for organizing control of combinatorial circuits”, Avtomatika i telemekhanika, no. 1, pp. 169-177.
https://doi.org/10.1134/S0005117912010122
22. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. and Blyudov, A. (2013), “On the problem of selection of code with summation for combinational circuit test organization”, Proceedings of 11th IEEE East-West Design &Test Symposium (EWDTS`2013), Rostov-on-Don, Russia, September 27-30, 2013, pp. 261-266. DOI 10.1109/EWDTS.2013.6673133.
23. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2014), “On codes with summation of data bits in concurrent error detection systems”, Avtomatika i telemekhanika, no. 8, pp. 131-145.
https://doi.org/10.1134/S0005117914080098
24. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. and Nikitin, D. (2015), “Sum code formation with minimum total number of undetectable errors in data vectors”, Proceedings of 13th IEEE East-West Design & Test Symposium (EWDTS`2015), Batumi, Georgia, September 26-29, 2015, pp. 141-148.
https://doi.org/10.1109/EWDTS.2015.7493112
25. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2016), “On one method of formation of optimum sum code for technical diagnostics systems”, Proc. of 14th IEEE East-West Design & Test Symposium (EWDTS’2016), Yerevan, Armenia, October 14-17, 2016, pp. 158-163.
https://doi.org/10.1109/EWDTS.2016.7807633
26. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Errors classification in information vectors of systematic codes”, Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333-343, DOI 10.17586/0021-3454-2015-58-5-333-343.
27. Efanov, D.V. (2016) “On the problem of modified codes with summation of weighted data bits with natural numbers sequence of weight indexes generators synthesis”, Vestnik Tomskogo gosudarstvennogo Universiteta. Upravleniye, vychislitelnaya tekhnika i informatika, no. 4, pp. 13-26.
https://doi.org/10.17223/19988605/37/2
28. Efanov, D.V. (2016), “The method of weighted code with summation generator synthesis”, Izvestiya vysshikh uchebnykh zavedeniy. Physics, Vol. 59, no. 8/2, pp. 33-36.
29. Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.R, Brayton, R.K., and Sangiovanni-Vincentelli, A. (1992), SIS: A system for sequential circuit synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA.
30. Collection of digital design Benchmarks, available at: http://ddd.fit.cvut.cz/prj/Benchmarks/].

Full text: PDF (in Russian)