Ya.A. Kalinovsky, Yu.E. Boyarinova, A.S. Sukalo, Ya.V. Khitsko
Èlektron. model. 2017, 39(5):81-96
https://doi.org/10.15407/emodel.39.05.081
ABSTRACT
The principles assumed as a basis of the algorithmic-software complex of hypercomplex computations are stated. The complex structure and the composition of the functional subsystems are described. The most important procedures performed by the subsystems are considered, program listings and examples of their application are given.
KEYWORDS
hypercomplex numerical system, procedure, computer algebra, operation, Maple.
REFERENCES
1. Sinkov, M.V., Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2010), Konechno-mernyie giperkompleksnyie chislovyie sistemy. Osnovy teorii. Primeneniya [Finite-dimensional hypercomplex number systems. Fundamentals of the theory. Applications], NAS of Ukraine, Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine.
2. Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2012), Vysokorazmernyie izomorfnyie giperkompleksnyie chislovyie sistemy i ikh ispolzovaniye dlya povysheniya effektivnosti vychisleniy [High-dimensional isomorphic hypercomplex numerical systems and their use for increasing efficiency of computations], Infodruk, Kyiv, Ukraine.
3. Kalinovsky, Ya. A. (2007), “Development of the methods of the theory of HNS for a mathematical modeling and computer calculations”, Dr. Sci. (Tech.) thesis, 01.05.02, Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine.
4. Kalinovsky, Ya.A., Lande, D.V., Boyarinova, Yu.E. and Khitsko, Ya.V. (2014), Giperkompleksnye chislovye sistemy i bystrye algoritmy tsifrovoy obrabotki informatsii [Hypercomplex number systems and fast algorithms for digital information processing], Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine.
5. Von zur Gathen, J. and Gerhard, J. (2013), Modern computer algebra, Cambrige University Press, Cambridge, UK.
6. Kalinovsky, Ya.A., Boyarinova, Yu.E. and Sukalo, A.S (2015), “Study of relations between the generalized quaternions and procedure of doubling of hypercomplex numerical systems”, Data Rec., Storage & Processing, Vol. 17, no. 1, pp. 36-45.
7. Kalinovsky, Ya.A. (2013), “The structure of a hyperfast calculation method linear convolution of discrete signals”, Data Rec., Storage & Processing, Vol. 15, no.1, pp. 31-44.
8. Kalinovsky, Ya.A., Lande, D.V., Boyarinova, Yu.E. and Khitsko, Ya.V. (2014), Some isomorphic classes for noncanonical hypercomplex number systems of dimension 2, -arXiv preprint arXiv:1403.2273, 2014.
9. Liefke, H. (1998), “Quaternion calculus for modeling rotations in 3D space”, available at: www.liefke.com/ hartmut.