IMPLEMENTATION OF NON-INTEGER TECHNICAL SYSTEMS USING PROGRAMMABLE LOGIC

O.V. Vasiliev, V.V. Vasiliev, V.V. Choch, S.Ya. Hilgurt

Èlektron. model. 2024, 46(6):64-71

https://doi.org/10.15407/emodel.46.06.064

ABSTRACT

Digital devices capable of performing computations of non-integer (fractional) order, i.e., performing operations of differentiation and integration of non-integer multiplicity, can be used to solve many applied technical problems, such as sampling and low-pass filtering of signals, information compression, dynamic encryption, separation of a useful signal from the background of interference, identification of parameters of dynamic systems, etc. The issues of hardware implementation of the Grünwald—Letnikov method as a unified solution for the construction of digital differentiators and integrators of non-integer order based on programmable logic integrated circuits (FPGAs) are considered. The use of modern programmable logic products makes it possible to develop high-performance and flexible control devices with enhanced functionality and reduced power consumption, which can be effectively used to build mobile and unmanned systems.

KEYWORDS

Fractional-order system, Grünwald—Letnikov operator, FPGA.

REFERENCES

  1. Vasiliev, V.V., Simak, L.A., & Vasiliev, A.V. (2016). Signal processing and modeling of fractional order dynamical systems based on approximated type operational calculus. Èlektronnoe modelirovanie, 38(4), 13- https://doi.org/10.15407/emodel.38.04.013
  2. Sales Teodoro, G., Tenreiro Machado, J.A., & Capelas de Oliveira, E. (2019). A review of definitions of fractional derivatives and other operators. Journal of Computational Phy­sics, 388, 195- https://doi.org/10.1016/j.jcp.2019.03.008
  3. Monir, M.S., Sayed, W.S., Madian, A.H., Radwan, A.G., & Said, L.A. (2022). A unified FPGA realization for fractional-order integrator and differentiator. Electronics, 11(13), Стаття
    https://doi.org/10.3390/electronics11132052
  4. Podlubny, I. (1999). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press.
  5. Ricci, F., & Le-Huy, H. (2003). Modeling and simulation of FPGA-based variable-speed drives using Simulink. Mathematics and Computers in Simulation, 63(3-5), 183- 
    https://doi.org/10.1016/S0378-4754(03)00066-1
  6. Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., & Radwan, A.G. (2017). FPGA implementation of two fractional order chaotic systems. AEU International Journal of Electronics and Communications, 78, 162- 
    https://doi.org/10.1016/j.aeue.2017.04.028
  7. Tolba, M.F., Said, L.A., Madian, A.H., & Radwan, A.G. (2019). FPGA implementation of the fractional order integrator/differentiator: Two approaches and applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(4), 1484- 
    https://doi.org/10.1109/TCSI.2018.2885013
  8. Peng, D., Peng, L., & Zhang, X. (2021). Generic FPGA implementation of the fractional-order derivative and its application [Рукопис подано до опублікування]. Research Square.
  9. Mohamed, S.M., Sayed, W.S., Said, L.A., & Radwan, A.G. (2021). Reconfigurable FPGA realization of fractional-order chaotic systems. IEEE access, 9, 89376- 
    https://doi.org/10.1109/ACCESS.2021.3090336
  10. Dolai, S., Mondal, A., & Sarkar, P. (2023). Design and implementation of fractional-order controller in delta domain. Facta universitatis series: Electronics and Energetics, 36(2), 189- 
    https://doi.org/10.2298/FUEE2302189D
  11. Clemente-López,D., Munoz-Pacheco, J.M., Zambrano-Serrano, E., Félix Beltrán, O.G.F., & Rangel-Magdaleno, J.d.J. (2024). A piecewise linear approach for implementing fractional-order multi-scroll chaotic systems on arms and fpgas. Fractal and fractional, 8(7), 389. 
    https://doi.org/10.3390/fractalfract8070389
  12. Tolba, M.F., AboAlNaga, B.M., Said, L.A., Madian, A.H., & Radwan, A.G. (2019). Fractional order integrator/differentiator: FPGA implementation and FOPID controller application. AEU international journal of electronics and communications, 98, 220-229. 
    https://doi.org/10.1016/j.aeue.2018.10.007

Full text: PDF