S.I. Klipkov
Èlektron. model. 2021, 43(4):03-21
https://doi.org/10.15407/emodel.43.04.003
ABSTRACT
The mathematical properties of division algebras of dimension 2 are investigated on the basis of the analysis of possible values of the parameters introduced into the laws of composition of basic elements. Generalized expressions for calculating the inverse and neutral elements of the indicated algebras are given. The relations of the parameters defining the normalized division algebras are determined. Possibilities of application of linear orthogonal transformations for the analysis of isomorphism of such algebras are considered. The concept of an exponential function is introduced to represent the elements of the considered non-commutative division algebra in exponential form.
KEYWORDS
complex numbers, double numbers, dual numbers, algebraic systems, commutative algebras, non-commutative algebras, neutral elements, normed algebras, isomorphism.
REFERENCES
- Kantor, I.L., Solodovnikov, A.S. (1984), Giperkompleksnyje chisla [Hypercomplex numbers],Mir, Moscow, USSR.
- Kalinovsky, Ya.A., Boyarinova, Yu.E. (2012), Vysokorazmernyje izomorfnyje giperkompleksnyie chislovyje systemy i ikh ispolzovanije dlya povysheniya effektivnosti vychisleniy [High-dimensional isomorphic hypercomplex number systems and their use to improve computational efficiency], Infodruk, Kyiv, Ukraine.
- Baez, J.C. (2001), "The octonions", Bulletin of the American Mathematical Society, Vol. 39, 2, pp. 145-205.
https://doi.org/10.1090/S0273-0979-01-00934-X - Kervaire M.A. (1958), “Non-parallelizability of the n sphere for n > 7”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 44, No. 3, pp. 280-283.
https://doi.org/10.1073/pnas.44.3.280 - Bott R, Milnor J. (1958), “On the parallelizability of the spheres”, Bulletin of the American Mathematical Society, Vol. 64, pp. 87-89.
https://doi.org/10.1090/S0002-9904-1958-10166-4