INVESTIGATION OF POSSIBILITIES OF USING PARALLEL COMPUTING FOR SIMULATION OF TECHNOLOGICAL GAS-DISCHARGE ELECTRON SOURCES

I.V. Melnyk, A.O. Luntovskiy

Èlektron. model. 2018, 38(3):05-22
https://doi.org/10.15407/emodel.38.03.005

ABSTRACT

The methods of estimation of the efficiency of parallelization for computational algorithms for the problems of different level of complicity have been considered in the article. The problems of different level of complicity, which are connected with simulation of technological high-voltage glow discharge electron sources, are considered as the testing examples. Examples of parallelization of the problems of calculation of magnetic field of symmetric lens, analysis of temperature and mobility of ions in anode plasma, calculation of losses of electron beam current during its transporting, as well as simulation of self-consistent electron-ion optic of high voltage glow discharge,
are described.

KEYWORDS

parallel computing, clusters, arithmetic-logic function, recurrent matrix, electron beam, electron-beam technologies, electron sources, anode plasma.

REFERENCES

1. Schill, A. and Springer, T. (2012), Verteilte Systeme—Grundlagen und Basistechnologien, 2, Auflage, Springer-Verlag, Germany.
2. Tanenbaum, A.S. and Wetherall, D.J. (2012), Computernetzwerke, 5., aktualisierte Auflage, Pearson Studium, Germany.
3. Hokni, R. and Istvud, Dzh. (1987), Computer simulation using particles, Mir, Moscow, Russia.
4. Molokovskiy, S.I. and Sushkov, D.I. (1991), Intensivnye elektronnye i ionnye puchki [Intensive electron guns and electron beams], Energoatomizdat, Moscow, Russia.
5. Denbnovetskiy, S.V., Melnyk, V.G., Melnyk, I.V. and Felba, J. (1997), “Model of beam formation in a glow discharge electron gun with a cold cathode”, Applied Surface Science, no. 111, pp. 288-294.
https://doi.org/10.1016/S0169-4332(96)00761-1
6. Melnik, I.V. and Tugai, S.B. (2010), “Methods of simulation of technological high voltage glow discharge electron sources”, Elektronnoe modelirovanie, Vol. 32, no. 6, pp. 31-43.
7. Sveshnikov, V.M. and Rybdylov, B.D. (2013), “About parallelization of solving of boundary value problems on quasi-structured grids”, Vestnik Uralskogo gosudarstvennogo universiteta, Vol. 2, 3, pp. 63-72.
8. Medvedev, A.V., Sveshnikov, V.M. and Turchanovskiy, I.Yu. (2014), “Parallelization of solving boundary tasks on quasi-structured grids with using hybrid calculations CPU+GPU”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Informatsionnye tehnologii, Vol. 12, no. 1, pp. 50-54.
9. Sveshnikov, V.M. (2009), “Building of direct and iteration methods of decomposition”, Sibirskiy zhurnal promyshlennoy matematiki, Vol. 12, no. 3(39), pp. 99-109.
10. Melnyk, I.V. (2009), “Analysis of possibilities of using matrix macrooperations of system Matlab for solving the applied tasks”, Elektronnoe modelirovanie, Vol. 31, no. 3, pp. 37-51.
11. Melnyk, I.V. and Shinkarenko, N.V. (2011), “Analysis of algorithm particularities of calculated matrix for solving the programming tasks with using matrix macrooperations”, Elektronnoe modelirovanie, Vol. 33, no. 2, pp. 81-92.
12. Norenkov, I.P. and Manichev, V.B. (1990), Osnovy teorii i proektirovaniya SAPR [Bases of the theory and design of CAD-systems], Vysshaya shkola, Moscow, Russia.
13. Melnyk, I.V. (2007), “Classification of models of electron-optical systems in the point of view of CAD-systems methodology”, Elektronika i svyaz, Vol. 12, no. 2 (37), pp. 20-31.
14. Melnyk, I.V. (2013), “Generalized methods of simulation of high-voltage glow dicharge triode electron sources”, Elektronnoe modelirovanie, Vol. 35, no. 4, pp. 93-107.
15. Velihov, E.P., Kovalyov, V.S. and Rahimov, A.T. (1987), Fizicheskie yavleniya v gazorazryadnoy plasme [Physical phenomena in the gas-discharge plasma], Nauka, Moscow, Russia.
16. Denbnovetskiy, S.V., Melnyk, V.G., Melnyk, I.V. and Tugai, B.A. (2010), “Simulation of guiding of short-focus electron beams from soft to high vacuum with taking into account the dessipation of thermal velocity of electrons”, Prikladnaya fizika, no. 3, pp. 84-90.

Full text: PDF (in Russian)