MATHEMATICAL MODELING OF STOCHASTIC DYNAMICS OF THE INTERACTION OF STUDENTS OF DIFFERENT SPECIALTIES IN THE PROCESS OF INTEGRATED LEARNING

M.O. Kovalchuk, O.V. Majevsky

Èlektron. model. 2023, 45(3):72-81

https://doi.org/10.15407/emodel.45.03.072

ABSTRACT

The article proposes the concept of assessing the level of optimal load modes in terms of tasks (flow of tasks) for two groups of students in the process of integrated education in the specialty 126 "Information systems and technologies" and specialty 022 "Web design", by using the toolkit of Markov chains and equations Kolmogorov. The proposed approach allows you to reproduce the dynamics of states and the results of the mutual influence of two social groups, which are represented by a contingent of students in the context of processing the flow of tasks. Possible options for research may include comparing the level of productivity of each group, the influence of factors affecting their work, as well as the calculation of probabilities of states of social groups over time and marginal probabilities.

KEYWORDS

optimal regime, Markov chains, Kolmogorov equation, state probabilities, marginal probabilities, integrated learning.

REFERENCES

  1. Velhach A.V. Aktualni pytannia systemy profesiinoi pidhotovky webdyzaineriv v ramkakh suchasnykh tendentsii proektuvannia Internet resursiv. Suchasni informatsiini tekhnolohii ta innovatsiini metodyky navchannia: dosvid, tendentsii, perspektyvy. 2018. № 2. URL: http://tnpu.edu.ua/bitstream/123456789/15303/1/Velhach.pdf (data zvernennia: 25.05.2023).
  2. Herasymenko I.V. Metodyka vykorystannia tekhnolohii dystantsiinoho navchannia v pidhototsi bakalavriv kompiuternykh nauk : avtoref. dys. …kand. ped. nauk : 13.00.10. Kyiv, 2014. 23 s. URL: https://lib.iitta.gov.ua/705269/1/aref_Gerasimenko.pdf (data zvernennia: 23.05.2023).
  3. Kozlovska I.M., Kmit Ya.M. Problemy intehratsii u suchasnii profesiinii osviti: metodolohiia, teoriia, praktyka : monohrafiia / red.: I.M. Kozlovska, Ya.M. Kmit. Lviv : Spolom, 2004, 244 s.
  4. Honcharenko S., Malovanyi Yu. Intehratsiia elementiv zmistu osvity. Poltava, 1994. 234 s.
  5. Zhaldak M.I. Teoriia ymovirnostei i matematychna statystyka z elementamy informatsiinoi tekhnolohii : navch. posib. Kyiv : Vyshcha shk., 351 s.
  6. Rudenko V.M. Matematychna statystyka : navch. posib. Kyiv : Tsentruchbovoi literatury, 2012. 304 s.

Full text: PDF