STATISTICAL CRITERION OF CHECKING OF INDEPENDENCE OF INNER STATES AND OUTPUTS OF CRYPTOPRIMITIVE WHICH GENERATES (PSEUDO)RANDOM SEQUENCES

L.V. Kovalchuk, A.N. Davydenko, T.M. Klymenko, O.Yu. Bespalov

Èlektron. model. 2024, 46(5):03-18

https://doi.org/10.15407/emodel.46.05.003

ABSTRACT

The article is devoted to creation and justification of new statistical criterion of pairwise independence of binary sequences from given set, which are considered as realization of random variables. The corresponding algorithm, which fulfills the checking of pairwise independence, is formulated in details. This algorithm is necessary tool for statistical verification of cryptographic quality of different cryptoprimitives, which functioning is connected with random/ pseudorandom sequences generation — such as random/pseudorandom sequences generators or stream ciphers. Usage of the obtained criterion allows independence checking not only for output sequences, but also for its intermediate state or inputs. Note that such independence is necessary for unpredictability of output sequences.

KEYWORDS

random/pseudorandom sequences generator, independence of random variab­les, correlation matrix, inner states and outputs of cryptoprimitive.

REFERENCES

  1. Christof Paar, Jan Pelzl, (2009). "Stream Ciphers", Chapter 2 of "Understanding Crypto­graphy, A Textbook for Students and Practitioners". Springer. https://dosen.itats.ac.id/sitiagustini/ wp-content/uploads/sites/78/2017/05/Understanding_Cryptography_Chptr_2-Stream_ Ciphers.pdf
  2. Matt, J.B. Robshaw, (1995). Stream Ciphers Technical Report TR-701, version 2.0, RSA Laboratories. https://www.networkdls.com/Articles/tr-701.pdf
  3. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22, 1999. Rev. 1.
  4. Marsaglia, G., (1996). “Diehard: A Battery of Tests of Randomness”. http://stat.fsu.edu/ geo/diehard.html , https://www.scirp.org/reference/referencespapers?referenceid=622311
  5. FIPS 140-2 Security Requirements for Cryptographic Modules, Date Published: May 25, (2001). (Change Notice 2, 12/3/2002). https://csrc.nist.gov/pubs/fips/140-2/upd2/final
  6. Almaraz Luengo, E., Román Villaizán, J. (2023). Cryptographically Secured Pseudo-Random Number Generators: Analysis and Testing with NIST Statistical Test Suite. 11. 4812. 
    https://doi.org/10.3390/math11234812
  7. Suwais, K., Almanasra, S. (2023). Strike: Stream Cipher Based on Stochastic Lightning Strike Behaviour. Sci. 13. 4669. 
    https://doi.org/10.3390/app13084669
  8. Wu, S.-T. (2023). A Key-Based Multi-Mode Clock-Controlled Stream Cipher for Real-Time Secure Communications of IoT. 12. 1076. 
    https://doi.org/10.3390/electronics12051076
  9. Melosik, M., Galan, M., Naumowicz, M., Tylczyński, P., Koziol, S. (2023). Cryptographically Secure PseudoRandom Bit Generator for Wearable Technology. 25. 976.
    https://doi.org/10.3390/e25070976
  10. Bikos, A., Nastou, P.E., Petroudis, G., Stamatiou, Y.C. (2023). Random Number Ge­ne­rators: Principles and Applications. 7. 54. 
    https://doi.org/10.3390/cryptography7040054
  11. Piątkowski, J., Szymoniak, S. (2023). Methodology of Testing the Security of Cryptographic Protocols Using the CMMTree Framework. Sci. 13. 12668. 
    https://doi.org/10.3390/app132312668
  12. Crocetti, L., Nannipieri, P., Di Matteo, S., Fanucci, L., Saponara, S. (2023). Review of Methodologies and Metrics for Assessing the Quality of Random Number Generators. 12. 723. 
    https://doi.org/10.3390/electronics12030723
  13. Madarro-Capó, E.J., Ramos Piñón, E.C., Sosa-Gómez, G., Rojas, O. (2024). Practical Improvement in the Implementation of Two Avalanche Tests to Measure Statistical Independence in Stream Ciphers. 12. 60. 
    https://doi.org/10.3390/computation12030060
  14. Kovalchuk, L.V., Koriakov, I.V., Alekseychuk, A.N., (2023). Krip: High-Speed Hardware-Oriented Stream Cipher Based on a Non-Autonomous Nonlinear Shift Register, Cybernetics and Systems Analysis. 59(1). 16-26.
    https://doi.org/10.1007/s10559-023-00538-6
  15. Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, New York. 500.
  16. Kovalchuk, L.V., Koriakov, І.V., Bespalov, О.Yu. (2024). Statistical tests for checking independency of random variables, which describe sequences generation in cryptoalgorithms. Electronic modeling. 46(3). 22-38. https://doi.org/10.15407/emodel.46.03.022
  17. Sample Correlation Coefficient. https://www.sciencedirect.com/topics/mathematics/sample- correlation-coefficient
  18. Feller, W. (1968) An Introduction to Probability Theory and Its Applications, 1. 3rd Edition, John Wiley & Sons, New York. https://bitcoinwords.github.io/assets/papers/an-introduction-to-probability-theory-and-its-applications.pdf
  19. Michel Goemans. (2015). Chernoff bounds, and some applications. Lecture notes. https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf.
  20. Kovalchuk, L.V., Koriakov, І.V., Bespalov, О.Yu. (2024). Statistical tests for checking independency of random variables, which describe sequences generation in cryptoalgorithms. Electronic modeling. 46(3). 22-38. 
    https://doi.org/10.15407/emodel.46.03.022

Full text: PDF