APPROXIMATE DYNAMIC MODELS OF NON-STATIONARY MEASURING TRANSDUCERS

A.F. Verlan  Yu.O. Furtat 

Èlektron. model. 2020, 42(3):03-12
https://doi.org/10.15407/emodel.42.03.003

ABSTRACT

Applied engineering analysis is used to study measurement processes using a meta-mathematical description, which should provide for the presence of analytic approximate dependencies that allow to illustrate, both qualitatively and quantitatively, the influence of physical parameters. Some difficulties in modeling the dynamic properties of non-stationary measuring transducers (MTs) with variable parameters are that there are no accurate analytical methods for solving equations that describe the behavior of dynamic objects in this class. The article discusses some methods of converting and deriving approximate dependencies to describe processes in a MT to a form that allows the use of approximate analytical solutions or efficient numerical methods.

KEYWORDS

approximate analysis, measuring transducer, dynamic model, integral equation.

REFERENCES

  1. Babak, V.P., Babak, S.V. and Yeremenko, V.S. (2014), Teoreticheskiye osnovy infor­matsionno-izmeritel'nykh sistem [Theoretical foundations of information-measuring systems], Kiev, Ukraine.
  2. Ripka, P. and Tipek, A. (2010), Modern sensors: handbook, Chichester: Jon Wiley&Sons.
  3. Verlan', A.F. and Sizikov, V.S. (1986), Integral'nyye uravneniya: metody, algoritmy, prog­rammy: Spravochnoye posobiye [Integral equations: methods, algorithms, programs: Refe­rence book], Nauk. dumka.
  4. Fedorchukm V.A. and Dyachuk, O.A. (2009), Ekvivalentuvannya matematychnykh mode­ley dynamichnykh system [Equivalence of mathematical models of dynamical systems], Matematychne ta komp'yuterne modelyuvannya. Seriya: Tekhnichni nauky, Vol. 2, pp. 155-164.
  5. Kress, R. (2014), Linear integral equations, 3rd, Springer, New York, USA.
    https://doi.org/10.1007/978-1-4614-9593-2
  6. Verlan', D.A. (2014), Metod vyrozhdennykh yader pri chislennoy realizatsii integral'nykh dinamicheskikh modeley [The method of degenerate kernels in the numerical implementation of integral dynamic models], Elektron. modelirovaniye, Vol. 36, no. 3, pp. 41-57.
  7. Smirnov, V.I. (1959), Kurs vysshey matematiki. V 5-ti tomakh. [The course of higher mathematics in 5 volumes], Fizmatgiz, Moscow.

Full text: PDF