ANALYSIS OF THE APPLICABILITY OF MACHINE LEARNING METHODS IN SOLVING THE PROBLEM OF PREDICTING THE IMPLEMENTATION OF CLUSTER BATCHING FACTORS

D.P. Sinko, K.D. Sinko

Èlektron. model. 2025, 47(1):22-39

https://doi.org/10.15407/emodel.47.01.022

ABSTRACT

The scenarios of cluster partitioning are described and an approach is proposed that involves adding a special node to the cluster in order to predict the onset of a state preceding the cluster partitioning. Based on the results of the analysis of machine learning algorithms, the algorithms that are appropriate for solving the problem of preventing the occurrence of critical states of a cyber-physical system in the context of network partitioning are identified.

KEYWORDS

split brain problem, partitioning, machine learning algorithms, cluster, cyber-physical system.

REFERENCES

  1. Söylemez, M., Tekinerdogan, B., & Kolukısa Tarhan, A. (2022). Challenges and solution directions of microservice architectures: A systematic literature review. Applied Sciences, 12(11), 5507.
    https://doi.org/10.3390/app12115507
  2. Bhuiyan, S., & Zheludkov, M. (2019). Apache ignite book. Lulu Press, Inc.
  3. Situation in energy system as of 13 May: Due to significant damage to power facilities and electricity shortages, restrictions for industrial consumers are possible. (2024). Government portal. https://www.kmu.gov.ua/news/sytuatsiia-v-enerhosystemi-na-13-travnia-cherez-znachni-poshkodzhennia-enerhoobiektiv-i-nestachu-elektroenerhii-mozhlyvi-obmezhennia-dlia-promyslovykh-spozhyvachiv
  4. Ongaro, D., & Ousterhout, J. (2014). In search of an understandable consensus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Confe­rence (ser. USENIX ATC’14, pp. 305-320). USENIX Association. ISBN 9781931971102.
  5. Shapiro, M., Preguiça, N., Baquero, C., & Zawirski, M. (2011). Conflict-free replicated data types. In X. Défago, F. Petit, & V. Villain (Eds.), Stabilization, safety, and security of distributed systems. SSS 2011. Lecture Notes in Computer Science (Vol. 6976). Springer, Berlin, Heidelberg. 
    https://doi.org/10.1007/978-3-642-24550-3_29
  6. Whittaker, M., Charapko, A., Hellerstein, J.M., Howard, H., & Stoica, I. (2021). Read-Write quorum systems made practical. PaPoC ‘21: Proceedings of the 8th Workshop on Principles and Practice of Consistency for Distributed Data
    https://doi.org/10.1145/3447865.3457962
  7. Lakshman, A., & Malik, P. (2010). Cassandra. ACM SIGOPS Operating Systems Review, 44(2), 35- 
    https://doi.org/10.1145/1773912.1773922
  8. AWS whitepapers & guides. Amazon Web Services, Inc. https://aws.amazon.com/whitepapers/
  9. Louppe, G. (2014). Understanding random forests: From theory to practice. Choice Reviews Online, 45(02), 45–0602–45–0602. 
    https://doi.org/10.5860/CHOICE.45-0602
  10. Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140- 
    https://doi.org/10.38094/jastt1457
  11. Rodríguez González, S., González-Briones, A., Gola, A., Katranas, G., Ricca, M., Loukanova, R., & Prieto, J. (2021). Distributed computing and artificial intelligence, special sessions, 17th international conference. Springer International Publishing. 
    https://doi.org/10.1007/978-3-030-53829-3
  12. Narayan, Y. (2021). Direct comparison of SVM and LR classifier for SEMG signal classification using TFD features. Materials Today: Proceedings, 45, 3543-
    https://doi.org/10.1016/j.matpr.2020.12.979
  13. Ahmed, M., Seraj, R., & Islam, S.M.S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295. 
    https://doi.org/10.3390/electronics9081295
  14. Li, D., Tang, Z., Kang, Q., Zhang, X., & Li, Y. (2023). Machine learning-based method for predicting compressive strength of concrete. Processes, 11(2), 390. 
    https://doi.org/10.3390/pr11020390
  15. Brownlee, J. (2020). A gentle introduction to the gradient boosting algorithm for machine learning. Machine Learning Mastery. https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
  16. Yan, J., Xu, Y., Cheng, Q., Jiang, S., Wang, Q., Xiao, Y., Ma, C., Yan, J., & Wang, X. (2021). LightGBM: Accelerated genomically designed crop breeding through ensemble learning. Genome biology, 22(1).
    https://doi.org/10.1186/s13059-021-02492-y
  17. Hancock, J.T., & Khoshgoftaar, T.M. (2020). CatBoost for big data: An interdisciplinary review. Journal of Big Data, 7(1). 
    https://doi.org/10.1186/s40537-020-00369-8
  18. Islam Khan, M.S., Islam, N., Uddin, J., Islam, S., & Nasir, M.K. (2021). Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. Journal of King Saud University — Computer and Information Sciences.
    https://doi.org/10.1016/j.jksuci.2021.06.003
  19. Arashi, M., Roozbeh, M., Hamzah, N.A., & Gasparini, M. (2021). Ridge regression and its applications in genetic studies. Plos One, 16(4), 
    https://doi.org/10.1371/journal.pone.0245376
  20. Lee, J.H., Shi, Z., & Gao, Z. (2021). On LASSO for predictive regression. Journal of Econometrics
    https://doi.org/10.1016/j.jeconom.2021.02.002
  21. Hassanien, A.E., Bhatnagar, R., & Darwish, A. (2021). Advanced machine learning technologies and applications. Springer Singapore. 
    https://doi.org/10.1007/978-981-15-3383-9

Full text: PDF