H.A. Kravtsov, I.A. Prytulyuk
Èlektron. model. 2018, 38(2):11-26
https://doi.org/10.15407/emodel.38.02.011
ABSTRACT
The author’s classification of algorithms based on the review of famous fundamental and modern works is presented. The author’s classification is different from already known ones due to the involved terms of high order algorithms and context-related algorithms.
KEYWORDS
classification, properties, discreteness, determinism, probability, context dependency.
REFERENCES
1. Maltsev, A. (1986), Algoritmy i rekursivnyie funktsii [Algorithms and recursive functions], Nauka, Moscow, Russia.
2. Knut, D. (1968), Iskustvo programmirovaniya. Tom1. Osnovnyie algoritmy [The Art of Computer Programming. Vol. 1. Fundamental Algorithms], Manual, Third Edition, translated from English by Prof. Kozachenko, Yu.V., Williams, Moscow, Russia.
3. Cormen, T.H., Leizerson, Ch.I., Rivest, R.L. and Shtain, K. (1990), Algoritmy: postroyeniye i analiz [Algorithms: structure and analysis], Williams, Moscow, Russia.
4. Alferova, Z.V. (1973), Teoriya algoritmov [Algorithm theory], Statistika, Moscow, Russia.
5. Subramaniam, V. (2008), Programming Scala. Tackle multicore complexity on Java virtual machine. The pragmatic programmers, Pragmatic bookshelf, Raleigh, North Carolina, Dallas, Texas, USA.
6. Pirs, B. (2012), Tipy v yazykakh programmirovaniya [Types in programming languages], Lambda Press and Dobrosvet, Moscow, Russia.
7. Foundational theories of classical and constructive mathematics (2011), Ed. by Giovanni Sommaruga, Springer: The Western Ontario Series in Philosophy of Science, Canada.
8. Makleyn, S. (1998), Kategorii dlya rabotayushchego matematika [Categories for the working mathematician], Translated from English, Fizmatlit, Moscow, Russia.
9. Lafore, R. (2002), Struktury dannykh i algoritmy v Java [Data structures and algorithms in Java], Piter, Moscow, Russia.
10. Gilbert, D. and Bernays, P. (1982), Osnovaniya matematiki. Logicheskie ischileniya i formalizatsiya arifmetiki [Mathematics bases. Logical calculus and arithmetic formalization], Nauka, Moscow, Russia.
11. Gödel, K. (1931), Über formal unentscheidbare S atze der Principia Mathematica und verwandter Systeme I, Monatshefte f ur mathematik und physic, Vol. 38, no. 1, pp. 173-198.
12. Barendregt, H.P. (1985), Lambda-ischislenie. Yego sintaksis i semantika [The Lambda calculus. Its syntax and semantics], Translated from English, Mir, Moscow, Russia.
13. Kleene, S.C. (1936), General recursive functions of natural numbers, Mathematische Annalen, Vol. 112, pp. 727-742.
14. Uspenskiy, V. (1979), Mashina Posta [Post–Turing machine], Nauka, Moscow, Russia.
15. Turing, A. (1936), On computable numbers, with an application to the Entscheidungs problem, Proc. of the London Mathematical Society, Series 2, Vol. 42, pp. 230-265, available at:http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf ( accessed August 2015).
16. Khorstman, C. (2012), Skala dlya neterpelivykh [Scala for the impatient], translated from English, DMK, Moscow, Russia.
17. Markov, A. (1954), “Algorithm theory”, Trudyi matematich. in-ta im. V. A. Steklova, Vol. 42, MAIK «Nauka/Interperiodika», Moscow, Russia.
18. Sedzhvik, R. and Ueyn, K. (2011), Algoritmy na Java [Algorithms in Java], Williams, Moscow, Russia.
19. Rublev, V. (2005), Osnovyi teorii algorimov [Fundamentals of algorithm theory], P.G. Demidov Yaroslavl State University, Yaroslavl, Russia.