SOME FEATURES OF IMAGINARY EXPONENTIAL FUNCTIONS IN TWO-DIMENSIONAL NONCOMMUTATIVE, NON-ASSOCIATIVE ALGEBRAIC SYSTEMS

S.I. Klipkov

Èlektron. model. 2021, 43(6):34-49

https://doi.org/10.15407/emodel.43.06.034

ABSTRACT

Mathematical properties of imaginary exponential functions that can be used to represent the elements of two-dimensional algebraic systems constructed by introducing anticommutativity in the laws of composition of the elements of the basis of two-dimensional canonical numerical systems are considered.

KEYWORDS

exponential functions, imaginary units, complex numbers, double numbers, dual numbers, algebraic systems.

REFERENCES

  1. Kantor, I.L. and Solodovnikov, A.S. (1984), Giperkompleksnyye chisla [Hypercomplex numbers], Mir, Moscow, USSR.
  2. Rozenfeld, B.A. (1955), Neyevklidovy geometrii [Non-euclidean geometries], GITTL, Moscow, USSR.
  3. Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2012), Vysokorazmernyje izomorfnyje giperkompleksnyie chislovyje systemy i ikh ispolzovanije dlya povysheniya effektivnosti vychis­leniy [High-dimensional isomorphic hypercomplex number systems and their use for efficiency increase of calculations], Infodruk, Kyiv, Ukraine.
  4. Klipkov, S.I. (2021), “Generalized Analysis of Division Algebras of Dimension 2”, Elekt­ronne modelyuvannya, Vol. 43, no. 4, pp. 5-21.

Full text: PDF