SIMPLIFIED METHOD OF AVERAGING PARAMETERS OF MULTI-LAYER PERIODIC MEDIUM FOR THE WAVE EQUATION

V.T. Chemerys, I.A. Borodiy

Èlektron. model. 2017, 39(2):103-112
https://doi.org/10.15407/emodel.39.02.103

ABSTRACT

Equivalent parameters have been determined of multilayer periodic medium, consisting of alternating layers of ferromagnetic and non-magnetic dielectric that is necessary for simulation of wave processes of non-stationary electromagnetic field propagation in the cross section of thin-laminated magnetic cores. The medium of core is considered as composite with periodic positions of ferromagnetic layers and non-ferromagnetic insulating layers. As a result of layers properties averaging the medium acquires the transversal-isotropic properties. Application of procedures for averaging of partial magnetic fluxes of adjacent layers along the cross section of elementary cell of the core gave a possibility to obtain the equivalent meanings of diffusion coefficient and wave propagation velocity of electromagnetic field which can be used for solution of the wave equation for the isotropic medium which is a model of original multi-layer periodic
structure.

KEYWORDS

thin-laminated magnetic core, periodic structure, cross section, elementary cell, magnetic fluxes, averaging procedures, wave propagation.

REFERENCES

1. Chemerys, V.T. and Borodiy, I.A. (2014),“Simulation of wave processes in the fine laminated cores of power elements of the pulsed devices”, Elektronnoe modelirovanie, Vol. 36, no. 2, pp. 107-111.
2. Zobnin, A.I.,Kudryavtsev, B.A. and Parton, V.Z. (1990), “Makswell equations for non-uniform medium of periodic structure”, Izvestiya Akademii Nauk Armyanskoy SSR, Vol. 43, no. 1, pp. 19-26.
3. Sanchez-Palencia, E. (1980), Non-homogeneous media and vibration theory, Springer-Verlag, New York, USA.
4. Bakhvalov, N.S. and Panasenko, G.P. (1964), Osredneniye processov v periodicheskikh strukturakh. Matematicheskiye zadachi mehaniki kompozitsionnykh materialov [Averaging of processes in periodic structures. Mathematical problems of mechanics of composite materials], Nauka, Fizmatlit, Moscow, USSR.
5. Bardzokas, D.I. and Zobnin, A.I. (2003), Matematicheskoye modelirovaniye fizicheskikh processov v kompozitsionnykh materialakh periodicheskoy struktury [Mathematical simulation of physical processes in composite materials of periodic structure], Editorial URSS, Moscow, Russia.
6. El Feddi, M., Ren, Z., Razek, A. and Bossavit, A. (1997), “Homogenization technique for Maxwell equations in periodic structures”, IEEE Trans. on Magnetics, Vol. 33, no. 2, pp. 1382-1385.
7. Magni, A., Cinzia, B., Bottauscio, O. and et al. (2012), “Magnetization process in thin laminations up to 1 GHz”, IEEE Trans. on Magnetics, Vol. 48, no. 4, pp. 1363-1366.
https://doi.org/10.1109/TMAG.2011.2172934
8. Shelukhin, V.V. and Terentev, S.A. (2009), “Frequency dispersion of dielectric permittivity and electric conductivity of rocks via two-scale homogenization of the Maxwell equations”, Progress in Electromagnetics Research B, Vol. 14, pp. 175–202.
https://doi.org/10.2528/PIERB09021804
9. Weinan, E., Engquist, B., Li, X., Weiqing, R. and Vanden-Eijnden, E. The heterogeneous multiscale method: Review, available at: web.math.princeton.edu/multiscale/review.pdf.
10. COMSOL Multiphysics. The platform for physics based modeling and simulation, available at: https://www.comsol.com/comsol-multiphysics.

Full text: PDF (in Russian)