QUASI-RANDOM GRAPHS AND STRUCTURAL STABILITY OF COMPLEX DISCRETE SYSTEMS

A.D. Glukhov

Èlektron. model. 2018, 38(5):35-42
https://doi.org/10.15407/emodel.38.05.035

ABSTRACT

Structural stability of complex discrete systems with random failures has been considered. Estimates of the connectivity system under the preset number of failures have been found with the help of quasi-random graphs. The evolution of connectivity of the systems based of expanders has been investigated.

KEYWORDS

complex discrete system, expander, quasi-random graph.

REFERENCES

1. Glukhov, O., Korostil, Ju. (2004), “Structural safety of complex discrete systems with random failures”, Modelyuvannya ta informatsiyni tekhnologii, Zbirnyk naukovykh prats IPME NAN Ukrainy, Vol. 27, pp. 91-95.
2. Raigorodsky, A. (2011), Modeli sluchaynyh grafov [Models of random graphs], MNTsMO, Moscow, Russia.
3. Erdos, P. and Renyi, A. (1960), On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci., Vol. 5, pp. 17-61.
4. Chung, F.R.K. and Garey, M.R. (1984), Diameter bounds for altered graphs, Journal of Graph Theory, Vol. 8, pp. 511-534.
5. Diestel, R. ( 2000) , Graph Theory, Springer-Verlag, NewYork, USA.
6. Glukhov, O.D. (2010), “On quasi random planar graphs of Poisson type”, Modelyuvannya ta informatziyni tekhnologii, Zbirnyk naukovykh prats IPME NAN Ukrainy, Vol. 57, pp. 10-12.
7. Hoory, S., Linial, N. and Wigderson, A. (2006), Expander graphs and their applications, Bulletin of the American Mathematical Society, Vol. 43, No. 4, pp. 439-561.
8. Cvetkovic, D.M., Doob, M. and Sachs, H. (1995), Spectra of Graphs, Johann Ambrosius Barth Verlag, Heidelberg/Leipzig, Germany.

Full text: PDF (in Russian)