CONSTRUCTION OF HIGH DIMENSIONAL ISOMORPHIC HYPERCOMPLEX NUMERICAL SYSTEMS

Ya.A. Kalinovsky, Y.E. Boyarinova, T.V. Sinkova, A.S. Sukalo

Èlektron. model. 2018, 38(6):67-84
https://doi.org/10.15407/emodel.38.06.067

ABSTRACT

A method for construction of isomorphous hypercomplex numbers systems has been proposed. Their use in mathematical modeling allows reducing considerably the volume of computations. The examples of construction of isomorphous pairs on the basis of the systems of doubling quadriplex numbers are presented.A method for construction of isomorphous hypercomplex numbers systems has been proposed. Their use in mathematical modeling allows reducing considerably the volume of computations. The examples of construction of isomorphous pairs on the basis of the systems of doubling quadriplex numbers are presented.

KEYWORDS

hypercomplex number system, Cayley’s table, isomorphism, doubling system, linear operator.

REFERENCES

1. Sinkov, M.V., Kalinovsky, Ya.O. and Boyarinova, Yu.E. (2010), Konechnomernyie giperkompleksnyie chislovyie sistemy. Osnovy teorii. Primeneniya [Finite-dimensional hypercomplex number systems. Fundamentals of the theory. Applications], Infodruk, Kyiv, Ukraine.
2. Sinkov, M.V., Kalinovsky, Ya.O. and Boyarinova, Yu.E. (2009), Giperkompleksnyie chislovyie sistemy: Osnovy teorii, prakticheskoe primeneniye, bibliografiya [Hypercomplex numerical systems: Fundamentals of the theory, practical application, bibliography], NAS of Ukraine, Kyiv, Ukraine, available at: http://www.imath.kiev.ua/~congress2009/Abstracts/SinkovBoyarinova.pdf.
3. Chaitin-Chatelan, F., Meskauskas, T. and Zaoui, A. (2000), Computation with Hypercomplex Numbers, GERFACS Technical Report TR/PA/00/69, available at: http://www.gerfacs.fr.
4. Silvestrov, V.V. (1998), “Number systems”, Soros Educational Journal, no. 8, pp. 121-127.
5. Baez, J.C. (2001), The octonions, available at: http://math/ucr.edu/home/baez/Octonions/octonions.html.
6. Chaitin-Chatelen, F., Meskauskas, T. and Zaoui, A. (2000), Geometry and algebra, CERFACS Technical Report TR/PA/00/74, available at: http://www.cerfacs.fr/algor/reports/2000/TRPA-00-74.ps.gz.
7. Chaitin-Chatelen, F. (1999), The computing power of geometry, CERFACS Technical Report TR/PA/99/74, available at: http://www.cerfacs.fr/algor/reports/2000/TR-PA-99-74.ps.gz.
8. Kantor, I.L. and Solodovnikov, A.S. (1973), Giperkompleksnyie chisla [Hypercomplex numbers], Nauka, Ìoscow, Russia.

Full text: PDF (in Russian)