SIGNAL PROCESSING AND MODELING OF FRACTIONAL ORDER DYNAMICAL SYSTEMS BASED ON APPROXIMATED TYPE OPERATIONAL CALCULUS

V.V. Vasiliev, L.A. Simak, A.V. Vasiliev

Èlektron. model. 2018, 38(4):13-34
https://doi.org/10.15407/emodel.38.04.013

ABSTRACT

The application of approximation-operational method based on the local and global versions of the Legendre polynomials for estimating the average signal values, the average values derivatives of the first and second orders, as well as the evaluation of the fractional derivatives of various orders in the Riemann-Liouville and Caputo sense. Illustrative examples of the method application for digital signal processing and simulation of dynamic systems of fractional order in the system software environment «Mathematica®»

KEYWORDS

fractional calculus, approximation and signal processing, operational calculus, dynamical system, Caputo type fractional derivative, Riemann-Liouville type fractional derivative, Matematica® System.

REFERENCES

1. Poularikas, A.D. (2000), The transforms and applications handbook, Ed by A.D. Poularikas, CRC Press & IEEE Press.
2. Pukhov, G.E. (1978), Preobrazovaniya Teilora i ikh primeneniya v elektrotekhnike i elektronike [Taylor transforms and their application in electro engineering and electronics], Naukova Dumka, Kiev, Ukraine.
3. Pukhov, G.E. (1982), “Differential transforms and circuit theory”, Circuit Theory and Applications, Vol. 10, pp. 265-276.
https://doi.org/10.1002/cta.4490100307
4. Simak, L.A. (1986), “Differential transforms based on fractional order derivatives and fractional-power spectra modeling”, Doklady akademii nauk Ukrainy, Seria A: Fiziko-matematicheskie i tekhnicheskie nauki, no. 8, pp. 79-82.
5. Uchaikin, V.V. (2008), Metod drobnyh proizvodnykh [Method of fractional derivatives], Artishok Publ., Ulyanovsk, Russia.
6. Vasiliev, V.V. and Simak, L.A. (2008), Drobnoye ischislenie i approksimatsionnye metody v modelirovanii dinamicheskikh sistem [Fractional calculus and approximated methods in dynamical systems modeling and simulation], Akadem press, Kiev, Ukraine. 
7. Oldham, K.B. and Spanier, J. (1974), The fractional calculus, Academic Press, New York, USA.
8. Podlubny, I. (1999), Fractional differential equations, Academic Press, San Diego, USA.
9. Wolfram, S. (1996), The mathematica book, Wolfram Media / Cambridge University Press, Cambridge, UK.

Full text: PDF (in Russian)