COBALTIC HYPERBOLOID. MODELS OF ENERGY REFLECTION IN THE REGION OF NORMAL INCIDENCE ANGLES

Y.S. Chernozomov

Èlektron. model. 2022, 44(3):31-41

https://doi.org/10.15407/emodel.44.03.031

ABSTRACT

The features of the reflection of unpolarized solar radiation in the infrared region of the spectrum, in which the heating of reflecting surfaces occurs, are considered. Mathematical models of the angular dependences of the reflection of a p-polarized wave in the region of normal incidence angles are presented. An optical system of a solar energy concentrator and a system for transmitting a high-potential ray flux with a bandwidth of the energy component of solar radiation are proposed.

KEYWORDS

angle of normal incidence, grazing incidence angle, infrared spectrum, polarization conservation region, energy component of radiation, optical anisotropy, Brews­ter angle.

REFERENCES

  1. Chernozоmov, E.S. (2020), “Models of energy distribution at the interface of media in dense energy fields of a solar concentrator system”, Elektronne modelyuvannya, Vol. 42, no. 6, pp. 34-55.
    https://doi.org/10.15407/emodel.42.06.034
  2. Chernozоmov, E.S. (2021), “Models of radiation polarization in the solar energy concentrator system”, Elektronne modelyuvannya, Vol. 43, no. 5, pp. 93-107.
    https://doi.org/10.15407/emodel.43.05.093
  3. Kozelkin, V.V., Usoltsev, I.F. (1967), Osnovy infrakrasnoy tekhniki [Fundamentals of infrared technology], Mashinostroyeniye, Moscow, USSR.
  4. Libenson, M.N., Yakovlev, E.B. and Shandybina, G.D. (2008), Vzaimodeystviye lazernogo izlucheniya s veshchestvom (silovaya optika). Chast I. Pogloshcheniye lazernogo izlucheniya v veshchestve [Interaction of laser radiation with matter (power optics). Part I. Absorption of laser radiation in matter], Universitet ITMO, St. Petersburg, Russia.
  5. Veiko, V.P., Libenson, M.N., Chervyakov, G.G. and Yakovlev, E.B. (2008), Vzaimodeistviye lazernogo izlucheniya s veshchestvom. Silovaya optika [Interaction of laser radiation with matter. Power optics], FIZMATLIT, Moscow, Russia.
  6. Abilsiitov, G.A., Golubev, V.S., Gontar, V.G. and others (1991), Tekhnologicheskiye lazery. Spravochnik v 2-kh tomakh. T. 1: Raschet, proyektirovaniye i ekspluatatsiya [Technological lasers: Handbook: In 2 volumes. Vol. 1: Calculation, design and operation], Mashinostroenie, Moscow, USSR.
  7. Landau, L.D. and Lifshits, E.M. (1982), Elektrodinamika sploshnykh sred. Tom VII. Izdaniye vtoroye [Electrodynamics of continuous media. Volume. Second edition], Nauka, Moscow, USSR.
  8. Weaver, J.Н., Colavita, Е., Lunch, D.W. and Rosei, R. (1979), “Low-energy interband absorption in body-centered cubic Fe and hexagonal close-packed Co”, Physical Review, Vol. 19, no. 8, pp. 3850-3856.
    https://doi.org/10.1103/PhysRevB.19.3850
  9. Noskov, M.M. (1983), Opticheskiye i magnetoopticheskiye svoystva metallov [Optical and magneto-optical properties of metals], UNC AN USSR, Sverdlovsk, USSR.
  10. Wakoh, S. and Yamashita, I. (1970), “Band structure of Co by self-consisting procedure”, Journal of the Physical Society of Japan, Vol. 28, no. 5, pp. 1151-1156.
    https://doi.org/10.1143/JPSJ.28.1151
  11. Ingersoll, L.R. (1924), “Magnetic rotation in sputtered cobalt filths”, Journal of the Optical Society of America, Vol. 8, no. 4, pp. 493-500.
    https://doi.org/10.1364/JOSA.8.000493
  12. Clemens, К.H. and Jaumann, J. (1963), “Magneto-optical and optical properties of ferromagnetic layers in the ultraroten”, Zeitschrift für Physik, Vol. 173, no. 1, pp. 135-148.
    https://doi.org/10.1007/BF01377889
  13. Krinchik, G.S. (1964), “Magneto-optics of ferromagnetic metals”, Izvestiya AN SSSR. Seriya fizicheskaya, Vol. 28, no. 3, pp. 481-488.
  14. Krinchik, G.S. (1957), “Investigation of magneto-optical resonance in ferromagnets”, Vestnik Moskovskogo universiteta, Vol. 6, pp. 87-98.
  15. Krinchik, G.S. (1959), “Magneto-optical resonance in ferromagnets. Visible region”, FMM, Vol. 7, no. 2, pp. 181-185.
  16. Krinchik, G.S. and Artemyev, V.A. (1967), “Magneto-optical properties of nickel, cobalt and iron in the UV, visible and IR regions of the spectrum”, ZhETF, Vol. 53, no. 6, pp. 1901-1912.
  17. Chernozоmov, E.S. (2021), Patent for utility model 149777, Ukraine, IPC (2021.01) F24S 10/00, F24S 20/00, F24S 23/00, G02B 6/00 “Concentrator-collimator of solar radiation based on hyperboloid”, 04520; application date August 04, 2021; publication date December 01, 2021; Bulletin no. 48.
  18. Chernozоmov, E.S. (2018), Patent for invention 120802, Ukraine, IPC (2020.01) F24S 10/00, G02B 6/00, F24S 20/20 (2018.01), F24S 23/00 “Device for concentration and transmission of solar radiation”, 06907; application date June 20, 2018; publication date February 10, 2020; Bulletin no. 3.

Full text: PDF