THE TWO-VALUED ANALOGUE OF VOLTERRA POLYNOMIAL FOR DESCRIPTION OF FULL REACTION OF BINARY MULTIDIMENSIONAL NONLINEAR MODULAR DYNAMIC SYSTEMS

F.G. Feyziyev, M.R. Mekhtiyeva, A.J. Huseynova

Èlektron. model. 2017, 39(3):03-16
https://doi.org/10.15407/emodel.39.03.003

ABSTRACT

The construction of a two-valued analogue of Volterra polynomial for description of full reaction of binary multidimensional nonlinear modular dynamic systems is considered. The recurrence formulas are presented for determining coefficients of this polynomial at certain values of the input and output sequences of multidimensional nonlinear modular dynamic systems.

KEYWORDS

multidimensional nonlinear modular dynamic system, two-valued analogue of Volterra polynomial, the recurrence formulas.

REFERENCES

1. Faradjev, R.G. (1975), Lineynye posledovatelnoctnye mashiny [Linear sequential machines], Sovetskoe radio, Moscow, Russia.
2. Blyumin, S.L. and Faradjev, R.G. (1982), “Linear cellular machines: The approach of the state space (review)”, Avtomatika i telemekhanika, no 2, pp. 125-163.
3. Faradjev, R.G. and Feyziyev, F.G. (1996), Metody i algoritmy resheniya zadachi kvadratichnoy optimizatsii dlya dvoichnykh posledovatelnostnykh mashin [Methods and algorithms for solving quadratic optimization problem for binary sequential machines], Elm, Baku, Azerbaijan.
4. Feyziyev, F.G. and Faradjeva, M.R. (2006), Modulyarnye posledovatelnostnye mashiny: Osnovnye rezultaty po teorii i prilozheniyu [Modular sequential machines: The main results in the theory and application], Elm, Baku, Azerbaijan.
5. Feyziyev, F.G. and Samedova, Z.A. (2011), “Polynomial ratio to represent the full reaction 3Dnonlinear modular dynamical systems”, Elektronnoe modelirovanie, Vol. 33, no. 2, pp. 33-50.
6. Blyumin, S.L. and Korneyev, A.M. (2005), Diskretnoye modelirovaniye system avtomatizatsii i upravleniya: Monografiya [Discrete modeling of automation and control systems: Monograph], Lipetsk Ekologo-gumanitarny institut, Lipetsk, Russia.

Full text: PDF (in Russian)