Efficiency Analysis of the Image Optimization Algorithm for the Formation of a Database Not Confirmed by the User

D.O. Zubariev, Post-graduate
G.E. Pukhov Institute for Modelling in Energy Engineering
National Academy of Sciences of Ukraine
(15, General Naumov Str., 03164, Kiev, Ukraine,
tel. +380996810567; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. Skarga-Bandurova, Doct. of Technical Sciences,
O.M. Sapytska, Cand. of Historical Sciences,
Volodymyr Dahl East Ukrainian National University
(59a, Tsentralny pr., 93400, Severodonetsk, Luhansk oblast, Ukraine,
tel. +380645228997; +380664838802;
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2020, 42(2):59-68
https://doi.org/10.15407/emodel.42.02.059

ABSTRACT

The ultimate goal of any process optimization in a particular area is to save time and human resources. The article analyzes the effectiveness of the original algorithm image processing when sampling for training artificial neural network CNN Class based on User-Confirmed Image-Dataset for needs defining image elements within binary logic.

KEYWORDS

Deep learning, Image-Dataset, image optimization function, network learning algorithm.

REFERENCES

  1. Zubarev, D.O. and Skarga-Bandurova, I.S. (2018), “Analiz efekty`vnosti navchannya CNN za pry`ncy`pom "vchy`tel`-uchen`" z vy`kory`stannyam nepidgotovlenogo Image-Dataset, Visny`k Nacional`nogo texnichnogo universy`tetu «XPI»”, Seriya «Informaty`ka i modelyuvannya», available at: https://doi.org/10.20998/2411-0558.2018.42.10 (Accessed 8 Jan 2019).
    https://doi.org/10.20998/2411-0558.2018.42.10
  2. Goodfellow, I., Bengio, Y., Courville, A. and Bach F. (2017), Deep learning, Cambridge, MA: MIT Press.
  3. Atienza, R. (2018), Advanced Deep Learning with Keras, Packt Publishing, Birmingham, UK.
  4. Nielsen, M. (2018), “Neural Networks and Deep Learning”, available at: http://neuralnetworksanddeeplearning.com (Accessed 15 Jan 2019).
  5. Chollet, F. (2017), Deep Learning with Python,Manning Publications, New York, USA.
  6. Rosebrock, A. (2017), Deep Learning for Computer Vision с Python, PyImageSearch.
  7. Shanmugamani, R. (2018), Deep Learning for Computer Vision Packt, PacktPublishing, Birmingham, UK.
  8. Sejnowski, T. J. (2018), The Deep Learning Revolution, MA: MIT Press.
    https://doi.org/10.7551/mitpress/11474.001.0001
  9. Pejić-Bach, M. (2007), “Developing system dynamics models with «step-by-step» approach”, available at: https://www.researchgate.net/publication/28811323_Developing_ system_dynamics_models_with_step-by-step_approach (Accessed 24 Dec 2018).
  10. Sewak, M., Rezaul K. and Pujari, P. (2018), Practical Convolutional Neural Networks, Packt Publishing.
  11. “OpenCV 2.4.13.7 documentation. Miscellaneous Image Transformations. Adaptive Threshold”, available at: https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_ transformations.html?highlight=threshold#threshold (Accessed 18 Jan 2019).
  12. (2018), “Python Script to download hundreds of images from Google Images”, available at: https://github.com/hardikvasa/google-images-download (Accessed 24 Jan 2019).
  13. Langtangen, H.P. (2015), “Doing operating system tasks in Python”, available at: https://hplgit.github.io/edu/ostasks/ostasks.pdf. (Accessed 26 Jan 2019).
  14. Howse, J. (2013), OpenCV Computer Vision with Python, Packt Publishing, Birmingham, UK.
  15. “The Python Standart Library. Subprocess management”, available at: https:// docs.python.org/2/library/subprocess.html (Accessed 26 Jan 2019).
  16. Gulli, A. and Pal, S. (2017), Deep Learning with Keras, Packt Publishing.
  17. Tosi, S. (2009), Matplotlib for Python Developers, Packt Publishing, Birmingham, UK.
  18. “The Python Standart Library. Parser for command-line options, arguments and sub-commands”, available at: https://docs.python.org/3.7/library/argparse.html (Accessed 26 Jan 2019).
  19. Changhau, I. (2017), “Loss Functions in Neural Networks”, available at: https:// isaacchanghau.github.io/post/loss_functions/ (Accessed 26 Jan 2019).

Full text: PDF