A.V. Makarichev, Dr. Sc (Phys.-Math.),
Kharkov Road-Transport University.Kharkov, 61002, Ukraine, e-mail:
A.A. Kud, A.B. Shchukin
Èlektron. model. 2018, 40(3):77-86
https://doi.org/10.15407/emodel.40.03.077
ABSTRACT
Probability distributions and numerical specifications for the sums of maxima of exponential price increments of received and served customers’ applications about sales in the period of employment have been found for the simplest Poisson input into the queuing system without delay and with constant holding time.
KEYWORDS
distribution of sums of maximums in the employment period
REFERENCES
1. Gnedenko, B.V. and Kovalenko, I.N. (1968), Introduction to queuing theory. Program for scientific translations, Jerusalem, Israel.
2. Makarichev, A.V., Kud, A.A. and Shchukin, A.B. (2017), “The sum of the increments of the maxima in the multichannel queuing system for modeling auction” Electronnoe modelirovanie, Vol. 37, no. 5, pp. 97-104.
3. Klimov, G.P. (1966), Stokhasticheskie sistemy obsluzhivaniya [Stochastic service systems], Moscow, USSR.
4. Solovyov, A.D. (1971), “The asymptotic behavior of the occurrence of the rare event in the regenerating process”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, no. 6, pp. 79-89.
5. Barzilovich, E.Yu., Belyaev, J.K., Kashtanov, V.A., Kovalenko, I.N. and Ushakov, I.A. (1983), Voprosy matematicheskoi teorii nadyozhnosti [Questions of mathematical theory of reliability], Ed by B.V. Gnedenko, Radio i svyaz, Moscow, USSR.
6. Khinchin A.Y. (1963), Raboty po matematicheskoi teorii massovogo obsluzhivaniya [Works in mathematical queuing theory], Fizmatgiz, Moscow, USSR.
7. Shiryaev, A.N. (1980), Veroyatnost [Probability], Nauka, Moscow, USSR.