Local Feature Extraction in High Dynamic Range Images

A. Sergiyenko, d-r of science, V. Romankevich, d-r of science,
P. Serhiienko, postgraduate student
Igor Sikorsky Kyiv Polytechnic Institute,
Ukraine, Kyiv, 03056
This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2022, 44(4):41-54

https://doi.org/10.15407/emodel.44.04.041

ABSTRACT

The methods of the local feature point extraction which are used in the pattern recognition are considered The Harris detector which is used in most effective feature point descriptors is complex and works worse in heavy luminance conditions. The modification of the high dynamic range (HDR) image compression algorithm is proposed. The modified algorithm is based on the Retinex method and consists of a set of the Harris-Laplace feature detectors which are much simpler than the Harris angle detector is. A prototype of the HDR video camera is designed which provides sharp images. Its structure simplifies the design of the artificial intelligence engine, which is implemented in the field programmable gate array.

KEYWORDS

field programable gate array, high dynamic range, feature extraction, pattern recognition, artificial intelligence.

REFERENCES

  1. Nixon, M.S. and Aguado, A.S. (2020), Feature Extraction and Image Processing for Com­puter Vision, 4-th ed., Academic Press, London, UK.
    https://doi.org/10.1016/B978-0-12-814976-8.00003-8
  2. Tuytelaars, T. and Mikolajczyk, K. (2007), “Local Invariant Feature Detectors: A Survey”, Foundations and Trends in Computer Graphics and Vision, Vol. 3, no 3, pp. 177-280.
    https://doi.org/10.1561/0600000017
  3. Krig, S. (2016), “Interest Point Detector and Feature Descriptor Survey”, Computer Vision Metrics, pp. 187-
    https://doi.org/10.1007/978-3-319-33762-3_6
  4. Kass, M., Witkin, A. and Terzopoulos, D. (1988), “Snakes: Active Contour Models”, International Journal of Computer Vision, Vol. 1, no. 4, pp. 321-331.
    https://doi.org/10.1007/BF00133570
  5. Moravec, H. (1977), “Towards Automatic Visual Obstacle Avoidance”, Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, August 22-25, 1977.
  6. Harris, C., Stephens, M. (1988), “A Combined Corner and Edge Detector”, Proceedings of Fourth Alvey Vision Conference, Manchester, UK, pp. 147-151.
    https://doi.org/10.5244/C.2.23
  7. Lowe, D.G. (2004), “Distinctive Image Features from Scale-Invariant Key Points”, Interna­tional Journal of Computer Vision, Vol. 60, no. 2, pp. 91-110.
    https://doi.org/10.1023/B:VISI.0000029664.99615.94
  8. Bay, H., Ess, A., Tuytelaars, T. and Gool, L.V. (2008), “Speeded-up robust features (SURF)”, Computer Vision and Image Understanding, Vol. 110, no. 3, pp. 346-359.
    https://doi.org/10.1016/j.cviu.2007.09.014
  9. Weng, D.W., Wang Y.H., Gong, M.M., Tao, D.C., Wei, H. and Huang, D. (2015), “DERF: Distinctive efficient robust features from the biological modeling of the P ganglion cells”, IEEE Transactions on Image Processing, Vol. 24, no. 8, pp. 2287-2302.
    https://doi.org/10.1109/TIP.2015.2409739
  10. Morel, J.M. and Yu, G. (2009), “ASIFT: a new framework for fully affine invariant image comparison”, SIAM Journal on Imaging Sciences, Vol. 2, no. 2, pp. 438-469.
    https://doi.org/10.1137/080732730
  11. Tola, E., Lepetit, V. and Fua, P. (2010), “DAISY: An efficient dense descriptor applied to wide baseline stereo”, IEEE Transactions on Image Processing, Vol. 32, no. 2, pp. 815-830.
    https://doi.org/10.1109/TPAMI.2009.77
  12. Tombari, F., Franchi, A. and, Di Stefano, L. (2013), “BOLD features to detect texture-less objects”, IEEE International Conference on Computer Vision, Sydney, Australia, December 1-8, 2013, pp. 1265-1272.
    https://doi.org/10.1109/ICCV.2013.160
  13. Rosten, E. and Drummond, T. (2006), “Machine Learning for High-Speed Corner Detec­tion”, Proceedings of ECCV 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, pp. 430-443.
    https://doi.org/10.1007/11744023_34
  14. Leutenegger, S., Chli, M. and Siegwart, R.Y. (2011), “BRISK: binary robust invariant scalable keypoints”, IEEE International Conference on Computer Vision, Barcelona, Spain, November 6-13, 2011, pp. 2548-2555.
    https://doi.org/10.1109/ICCV.2011.6126542
  15. Alahi, A., Ortiz, R. and Vandergheynst, P. (2012), “Freak: Fast Retina Keypoint”, IEEE Conf. on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pp. 510-517.
    https://doi.org/10.1109/CVPR.2012.6247715
  16. Calonder, M., Lepetit V., Özuysal, M., Trzcinski, T., Strecha, C. and Fua, P. (2012), “BRIEF: Computing a local binary descriptor very fast”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, no. 7, pp. 1281-1298.
    https://doi.org/10.1109/TPAMI.2011.222
  17. Zhang, D., Lu, G. (2002), “Generic Fourier descriptor for shape-based image retrieval”, IEEE International Conference on Multimedia and Expo, August 26-29, 2002, Vol. 1, pp. 425-428.
    https://doi.org/10.1016/S0923-5965(02)00084-X
  18. Nabout, A.A. and Tibken, B. (2005), “Wavelet Descriptors for Object Recognition using Mexican Hat Function”, IFAC Proceedings Volumes, Prague, Czech Republic, July 3-8, 2005, Vol. 38, no. 1, pp. 1107-1112.
    https://doi.org/10.3182/20050703-6-CZ-1902.00186
  19. Van Kaick, O., Zhang, H., Hamarneh, G. and Cohen-Or, D. (2011), “A survey on shape correspondence”, Computer Graphics Forum, Vol. 30, no. 6, pp. 1681-1707. 
    https://doi.org/10.1111/j.1467-8659.2011.01884.x
  20. Trzcinski, T., Christoudias, M. and Lepetit, V. (2015), “Learning image descriptors with boosting”,  IEEE  Transactions  on  Pattern  Analysis  and  Machine  Intelligence,   37, no. 3, pp. 597-610.
    https://doi.org/10.1109/TPAMI.2014.2343961
  21. Simonyan, K., Vedaldi, A. and Zisserman, A. (2014), “Learning local feature descriptors using convex optimisation”, IEEE Transactions on Pattern Analysis and Machine Intel­ligence, Vol. 36, no. 8, pp. 1573-1585.
    https://doi.org/10.1109/TPAMI.2014.2301163
  22. Shao, L., Liu, L. and Li, X.L. (2014), “Feature learning for image classification via multi­objective genetic programming”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 25. no. 7, pp. 1359-1371.
    https://doi.org/10.1109/TNNLS.2013.2293418
  23. Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. (2011), “ORB: An efficient alter­native to SIFT or SURF”, IEEE International Conference on Computer Vision, Barcelona, Spain, November 6-13, 2011, pp. 2564-2571.
    https://doi.org/10.1109/ICCV.2011.6126544
  24. Wu, G.R., Kim, M.J., Wang, Q., Munsell, B.C. and Shen, D.G. (2016), “S-calable high-performance image registration framework by unsupervised deep feature representations learning”, IEEE Transactions on Biomedical Engineering, Vol. 63, no. 7, pp. 1505-1516.
    https://doi.org/10.1109/TBME.2015.2496253
  25. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. and LeCun, Y. (2013), “Over­feat: Integrated Recognition”, Localization and Detection Using Convolutional Networks.
  26. Simonyan, K. and Zisserman, A. (2015), “Very deep convolutional networks for large-scale image recognition”, Proceedings of the International Conference on Learning Representa­tions, San Diego, CA, USA, May 7-9, 2015.
  27. Szegedy, C., Liu, W., Jia, Y.Q., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015),” Going deeper with convolutions”, Proceedings of IEEE Con­ference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 7-12, 2015, pp. 1-9.
    https://doi.org/10.1109/CVPR.2015.7298594
  28. Zheng, L., Yang, Y. and Tian, Q. (2018), “SIFT meets CNN: A decade survey of instance retrieval”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, no. 5, 1224-1244.
    https://doi.org/10.1109/TPAMI.2017.2709749
  29. Gul, M.S.K. and Gunturk, B.K. (2018), “Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks”, IEEE Transactions on Image Pro­cessing, Vol. 27, no. 5, pp. 2146-2159.
    https://doi.org/10.1109/TIP.2018.2794181
  30. Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. (2017), “Beyond a Gaussian De­noiser: Residual Learning of Deep CNN for Image Denoising”, IEEE Transactions on Image Processing, Vol. 26. no. 7, pp. 3142-3155.
    https://doi.org/10.1109/TIP.2017.2662206
  31. Zhang, Q.S. and Zhu, S.C. (2018), “Visual Interpretability for Deep Learning: a Survey”, Frontiers of Information Technology & Electronic Engineering, Vol. 19, no. 1, pp. 27-39.
    https://doi.org/10.1631/FITEE.1700808
  32. Muja, M. and Lowe, D.G. (2014), “Scalable nearest neighbor algorithms for high dimen­sio­nal data.”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, no. 11, pp. 2227-2240.
    https://doi.org/10.1109/TPAMI.2014.2321376
  33. Lowe, D.G. (2004), “Distinctive image features from scale invariant keypoints”, Internatio­nal Journal of Computer Vision, Vol. 60, no. 2, pp. 91-110.
    https://doi.org/10.1023/B:VISI.0000029664.99615.94
  34. Khan, N., McCane, B. and Mills, S. (2015), “Better than SIFT?”, Machine Vision and Applications, 26, pp. 819-836.
    https://doi.org/10.1007/s00138-015-0689-7
  35. McCann J.J. and Land E.H. (1971), “Lightness and retinex theory”, Journal of the Optical Society of America, Vol. 61, no. 1, pp. 1-11.
    https://doi.org/10.1364/JOSA.61.000001
  36. Paris, S., Kornprobst, P., Tumblin, J. and Durand, F. (2008), “Bilateral filtering: theory and applications”, Foundations and Trends in Computer Graphics and Vision, Vol. 4, no. 1, pp. 1-73.
    https://doi.org/10.1561/0600000020
  37. Hassaballah, M., Abdelmgeid, A.A. and Alshazly, H.A. (2016), “Image features detection, description, and matching”, Foundations and Applications, pp. 11− 46.
    https://doi.org/10.1007/978-3-319-28854-3_2
  38. Sergiyenko, A., Serhiienko, P. and Zorin, Ju. (2018), “High Dynamic Range Video Camera with Elements of the Pattern Recognition”, IEEE 38th International Conference on Electro­nics and Nanotechnology ELNANO’18, Kyiv, Ukraine, April, 2018, pp. 435-438.
    https://doi.org/10.1109/ELNANO.2018.8477556
  39. Nagao, M. and Matsuyama, T. (1979), “Edge preserving smoothing”, Computer Graphics and Image Processing, Vol. 9, no. 4, pp. 394-407.
    https://doi.org/10.1016/0146-664X(79)90102-3
  40. Sergiyenko, A., Serhiienko, P., Orlova, M. and Molchanov, O. (2019), “System of Feature Extraction for Video Pattern Recognition on FPGA,”, 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 1175-1178.
    https://doi.org/10.1109/UKRCON.2019.8879958

Full text: PDF