M.M. Nikolaiev, M.A. Novotarskyi
Èlektron. model. 2025, 47(6):84-101
https://doi.org/10.15407/emodel.47.06.084
ABSTRACT
Effective route optimization in the process of planning unmanned aerial vehicle trajectories plays a key role in ensuring operational safety, energy efficiency, and rational use of computing resources during autonomous navigation. This study presents a new hybrid optimization approach that combines the global capabilities of differential evolution with the deep local advantages of an improved whale behavior simulation algorithm. This integrated approach ensures obstacle avoidance, smooth trajectories, and efficient movement. The proposed method demonstrates faster convergence to optimal solutions compared to standard optimization algorithms. This is confirmed by a reduction in the total cost function. The Method makes it promising for practical application in complex and dynamic navigation conditions.
KEYWORDS
UAV, trajectory planning, differential evolution, evolutionary computation, optimization.
REFERENCES
- Yin, S., Yang, J., Ma, L., Fu, M. and Xu, K. (2024) “An Enhanced Whale Algorithm for Three-Dimensional Path Planning for Meteorological Detection of the Unmanned Aerial Vehicle in Complex Environments,” IEEE Access, 12, pp. 60039-60057. Available at: https://doi.org/10.1109/access.2024.3394055.
- Li, Y., Gao, A., Li, H. and Li, L. (2024) “An improved whale optimization algorithm for UAV swarm trajectory planning,” Advances in Continuous and Discrete Models, 2024(1). Available at: https://doi.org/10.1186/s13662-024-03841-4.
- Wu, Q., Tan, W., Zhan, R., Jiang, L., Zhu, L. and Wu, H. (2024) “GLBWOA: A Global–Local Balanced Whale Optimization Algorithm for UAV Path Planning,” Electronics, 13(23), p. 4598. Available at: https://doi.org/10.3390/electronics13234598.
- Dai, Y., Yu, J., Zhang, C., Zhan, B. and Zheng, X. (2022) “A novel whale optimization algorithm of path planning strategy for mobile robots,” Applied Intelligence, 53(9), pp. 10843- 10857. Available at: https://doi.org/10.1007/s10489-022-04030-0.
- Liu, H., Chen, Q., Pan, N., Sun, Y., An, Y. and Pan, D. (2022) “UAV Stocktaking Task-Planning for Industrial Warehouses Based on the Improved Hybrid Differential Evolution Algorithm,” IEEE Transactions on Industrial Informatics, 18(1), pp. 582-591. Available at: https://doi.org/10.1109/tii.2021.3054172.
- Hu, G., Huang, F., Seyyedabbasi, A. and Wei, G. (2024) “Enhanced multi-strategy bottlenose dolphin optimizer for UAVs path planning,” Applied Mathematical Modelling, 130, pp. 243-271. Available at: https://doi.org/10.1016/j.apm.2024.03.001.
- Hooshyar, M. and Huang, Y.-M. (2023) “Meta-heuristic Algorithms in UAV Path Planning Optimization: A Systematic Review (2018-2022),” Drones, 7(12), p. 687. Available at: https://doi.org/10.3390/drones7120687.
- Sun, G., Shang, Y., Yuan, K. and Gao, H. (2022) “An Improved Whale Optimization Algorithm Based on Nonlinear Parameters and Feedback Mechanism,” International Journal of Computational Intelligence Systems, 15(1). Available at: https://doi.org/10.1007/s44196-022-00092-7.
- Fu, S., Li, K., Huang, H., Ma, C., Fan, Q. and Zhu, Y. (2024) “Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems,” Artificial Intelligence Review, 57(6). Available at: https://doi.org/10.1007/ s10462-024-10716-3.
- Aggarwal, S. and Kumar, N. (2020) “Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges,” Computer Communications, 149, pp. 270-299. Available at: https://doi.org/10.1016/j.comcom.2019.10.014.
- Nikolaiev, M. and Novotarskyi, M. (2024) “Comparative Review of Drone Simulators,” Information, Computing and Intelligent systems, (4), pp. 79-98. Available at: https://doi.org/10.20535/2786-8729.4.2024.300614.
- Debnath, D., Vanegas, F., Sandino, J., Hawary, A.F. and Gonzalez, F. (2024) “A Review of UAV Path-Planning Algorithms and Obstacle Avoidance Methods for Remote Sensing Applications,” Remote Sensing, 16(21), p. 4019. Available at: https://doi.org/10.3390/rs16214019.
- Qadir, Z., Zafar, M.H., Moosavi, S.K.R., Le, K.N. and Mahmud, M.A.P. (2022) “Autonomous UAV Path-Planning Optimization Using Metaheuristic Approach for Predisaster Assessment,” IEEE Internet of Things Journal, 9(14), pp. 12505-12514. Available at: https://doi.org/10.1109/jiot.2021.3137331.
- Zhang, Z., Jiang, J., Wu, J. and Zhu, X. (2023) “Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm,” ISA Transactions, 134, pp. 42-57. Available at: https://doi.org/ 10.1016/j.isatra.2022.07.032.
- Zhen, R., Gu, Q., Shi, Z. and Suo, Y. (2023) “An Improved A-Star Ship Path-Planning Algorithm Considering Current, Water Depth, and Traffic Separation Rules,” Journal of Marine Science and Engineering, 11(7), p. 1439. Available at: https://doi.org/10.3390/jmse11071439.
- Zhou, L., Luo, Z., Jiao, P., Jin, X., Sun, X. and Shi, J. (2024) “A Priority-Based Hybrid Algorithm for UAV Path Planning,” 2024 10th International Conference on Big Data and Information Analytics (BigDIA). 2024 10th International Conference on Big Data and Information Analytics (BigDIA), IEEE. Available at: https://doi.org/10.1109/bigdia63733.2024.10808417.
- Chen, Y., Luo, G., Mei, Y., Yu, J. and Su, X. (2014) “UAV path planning using artificial potential field method updated by optimal control theory,” International Journal of Systems Science, 47(6), pp. 1407-1420. Available at: https://doi.org/10.1080/00207721.2014. 929191.
- Hao, K., Yang, Y., Li, Z., Liu, Y. and Zhao, X. (2023) “CERRT: A Mobile Robot Path Planning Algorithm Based on RRT in Complex Environments,” Applied Sciences, 13(17), p. 9666. Available at: https://doi.org/10.3390/app13179666.
- Sreelakshmy, K., Gupta, H., Ansari, I.A., Sharma, S., Goyal, K.K. and Verma, O.P. (2022) “Metaheuristic Optimization for Three Dimensional Path Planning of UAV,” Lecture Notes in Networks and Systems. Springer Nature Singapore. Available at: https://doi.org/10.1007/978-981-19-0707-4_71.
- Zhang, W., Zhang, S., Wu, F. and Wang, Y. (2021) “Path Planning of UAV Based on Improved Adaptive Grey Wolf Optimization Algorithm,” IEEE Access, 9, pp. 89400-89411. Available at: https://doi.org/10.1109/access.2021.3090776.
- Baş, E. and Ülker, E. (2020) “Improved social spider algorithm for large scale optimization,” Artificial Intelligence Review, 54(5), pp. 3539-3574. Available at: https://doi.org/10.1007/s10462-020-09931-5.
- Yu, X., Jiang, N., Wang, X. and Li, M. (2023) “A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning,” Expert Systems with Applications, 215, p. 119327. Available at: https://doi.org/10.1016/j.eswa.2022.119327.
- Zhong, C., Li, G. and Meng, Z. (2022) “Beluga whale optimization: A novel nature-inspired metaheuristic algorithm,” Knowledge-Based Systems, 251, p. 109215. Available at: https://doi.org/10.1016/j.knosys.2022.109215.
- Mirjalili, S. and Lewis, A. (2016) “The Whale Optimization Algorithm,” Advances in Engineering Software, 95, pp. 51-67. Available at: https://doi.org/10.1016/j.advengsoft. 2016.01.008.
- Huang, Y., Li, Y., Zhang, Z. and Sun, Q. (2023) “A novel path planning approach for AUV based on improved whale optimization algorithm using segment learning and adaptive operator selection,” Ocean Engineering, 280, p. 114591. Available at: https://doi.org/10.1016/j.oceaneng.2023.114591.