Electronic modeling

Vol 47, No 6 (2025)

CONTENTS

Mathematical modeling and Computation Methods

 

Horodetskyi M.V., Kaleniuk O.S.
Parallel Implementation of Polypoint Transformations with Adjacent Triangle Plane Inter-­ sections


3-10

Informational Technologics

 

Hnatiuk D.A.
Analysis of Modern Methods for Monitoring Anomalies in Server-Based Software Systems in Real Time


11-33
 

Sytnyk N.V., Denisova O.O., Zinovieva I.S.
The Concept of Building a Knowledge Graph for Harmonizing Educational and Professional Standards


34-57

Parallel Computing

 

Sinko D.P., Sinko K.D.
Application of Machine Learning Methods in Predicting Factors Indicating Potential Cluster Partitioning


58-68

Application of Modeling Methods and Facilities

 

Zolotarov Ye.O., Bouraou N.I.
Simulation Modeling of an Autonomous Unmanned Underwater Vehicle Circular Motion Taking Into Account Random Interference in Sensor Signals


69-83
 

Nikolaiev M.M., Novotarskyi M.A.
Adaptive Optimization Approach for Efficient UAV Trajectory Planning


84-101
  Dolgikh Y.V.
Researching the Efficiency of Scientific and Publication Activities of Higher Education Institutions Using the Two-Step Method of Data Envelopment Analysis
 
102-119

Parallel Implementation of Polypoint Transformations with Adjacent Triangle Plane Intersections

M.V. Horodetskyi, PhD student, O.S. Kaleniuk, Cand. Sc.
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”
37, Pr-t Beresteysʹkyy,Kyiv, Ukraine, 03056,
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2025, 47(6):03-10

https://doi.org/10.15407/emodel.47.06.003

ABSTRACT

Modern geometric deformation methods, such as polypoint transformations, are widely used in computer graphics, modeling, and engineering simulations. The obvious solution for lifting the performance limitations would be using parallel or distributed computations. Polypoint transformations are not inherently sequential or otherwise limited in parallelization, however, the potential benefits of parallel computation in the context of polypoint transforamtion have not yet been studied. This work studies the prospects of parallel computation of the polypoint transformations based on intersecting planes.

The study focuses on analyzing the efficiency of parallel computations for transforming large 3D models. We investigate the relationship between execution time and thread count, deriving two approximation models (rational and hyperbolic) that closely fit experimental data. A comparison with Amdahlʼs Law reveals that 90% of the algorithm can be parallelized, achieving a speedup of up to 7,5× using 24 threads.

KEYWORDS

Amdahlʼs Law, algorithm optimization, multicore processors, parallel computing, polygonal geometry, polypoint transformations.

REFERENCES

  1. Badaev, Y. & Sidorenko, Y. (2020). Geometric modeling of complex objects on the basis of tile mapping displays of direct cuts. Modern problems of modeling, (16), 17-24.
    https://doi.org/10.33842/2313-125X/2019/16/17/24
  2. Kolot, O.L. & Badaev, Y. (2019). Geometric modeling of complex objects based on point-based three-dimensional transformations of triangles. Modern problems of modeling,(13), 76-83. https://magazine.mdpu.org.ua/index.php/spm/article/view/2647
  3. Ausheva, N. & Humennyi, A. (2021). Modeling of fundamental splines in the form of quaternion curves. Modern problems of modeling, (20), 20-27.
    https://doi.org/10.33842/22195203/2021/20/20/27
  4. Badaiev, Y.I. & Hannoshyna, I.M. (2016). Design of a spatial curve, taking into account curvature and difficulties in nodes of interpolation method. Visnyk of Vinnytsia Politech­nical Institute, (4), 80-83. https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/ 1953.
  5. Sidorenko Yu, Kryvda O. & Leshchynska I. (2020). System of modeling of structural elements of ventilation systems by polycoоrdinate transformations. Strength of Materials and Theory of Structures, (104), 221-228. 
    https://doi.org/10.32347/2410-2547.2020.104.221-228
  6. Sydorenko, Yu.V., Kaleniuk, O.S. & Horodetskyi M.V. (2024). Polypoint Transformation Dependency on the Polyfiber Configuration. Control Systems and Computers, 4 (308), 3-9. 
    https://doi.org/10.15407/csc.2024.04.003
  7. Sidorenko Yu, Zalevskaya O. & Shaldenko O.V. (2022). Calculation of the area of the transformed object at polypoint transformations. Applied geometry and engineering graphics, (102), 65-75
    https://doi.org/10.32347/0131-579X.2022.102.188-195
  8. Badaiev, Y.I. & Sidorenko Yu. (2019). Geometric modeling of complex objects on the basis of tile mapping displays of direct cuts. Modern problems of modeling, (16), 17-24. 
    https://doi.org/10.33842/2313-125X/2019/16/17/24
  9. Horodetskyi M.V., Sydorenko Іu.V., (2025). Methods of defining geometry of an object in three-dimensional space for polypoint transformations. Èlektron. model, 47(3), 03-11.
    https://doi.org/10.15407/emodel.47.03.003
  10. Hill M.D. & Marty M.R. (2008). Amdahlʼs Law in the Multicore Era. Computer, 7 (41), 33-38. DOI: 10.1109/MC.2008.209.
    https://doi.org/10.1109/MC.2008.209

Full text: PDF

 

ANALYSIS OF MODERN METHODS FOR MONITORING ANOMALIES IN SERVER-BASED SOFTWARE SYSTEMS IN REAL TIME

D.A. Hnatiuk

Èlektron. model. 2025, 47(6):11-33

https://doi.org/10.15407/emodel.47.06.011

ABSTRACT

The use of machine learning methods for detecting anomalies in server-based software systems operating in real time is analyzed. In particular, LSTM for analyzing event logs and XGBoost for classifying structured event features. A systematization of modern methods of monitoring and analyzing event logs based on the use of machine learning methods is carried out. The advantages and disadvantages of individual methods are determined, and the effectiveness of their combined use for detecting anomalies in server software systems is substantiated. Particular attention is paid to the optimization of machine learning methods for detecting non-standard events in logging. They use mechanisms of attention, data caching, and methods of automated feature detection, which allow for real-time analysis of the event stream. The results of the analysis confirm the high potential of hybrid models for improving the stability, reliability, and performance of server software systems, allowing us to outline promising areas for further research in the field of anomaly detection.

KEYWORDS

anomaly monitoring methods, event logs, combined approach for anomaly detection, caching, high-load environments.

REFERENCES

  1. Zha, D., Bhat, Z., Lai, K.-H., Yang, F., Jiang, Z., Zhong, S., & Hu, X. (2023). Data-centric artificial intelligence: A survey. 38. https://doi.org/10.48550/arXiv.2303.10158
  2. Provatas, N., Konstantinou, I., & Koziris, N. (2025). A survey on parameter server architecture: Approaches for optimizing distributed centralized learning.
    https://doi.org/10.1109/ACCESS.2025.3535085
  3. Zhang, H., Zhou, Y., Xu, H., Shi, J., Lin, X., & Gao, Y. (2025). Anomaly detection in virtual machine logs against irrelevant attribute interference.
    https://doi.org/10.1371/journal.pone.0315897
  4. Sinha, R., Sur, R., Sharma, R., & Shrivastava, A. (2022). Anomaly detection using system logs: A deep learning approach. 
    https://doi.org/10.4018/IJISP.285584
  5. Hnatiuk, D.A. (2024). Osoblyvosti navchannia modelei dlia efektyvnoho analizu danykh i vyiavlennia anomalii v servernykh prohramnykh systemakh. U Information modeling technologies, systems and applications (s. 85). https://fotius.cdu.edu.ua/wp-content/uploads/ 2024/05/Book_IMTCK_2024.pdf
  6. Zhang, X., & Zhang, Q. (2020). Short-Term traffic flow prediction based on lstm-xgboost combination model. Cmes, 125(1), 95-109. 
    https://doi.org/10.32604/cmes.2020.011013
  7. Shi, Z., Hu, Y., Mo, G., & Wu, J. (2023). Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction. Journal of Latex Class Files, 14(8). https://doi.org/10.48550/arXiv.2204.02623
  8. Vervaet, A. (2023). MoniLog: An automated log-based anomaly detection system for cloud computing infrastructures. 5. https://arxiv.org/pdf/2304.11940
  9. Ede, T.V., Aghakhani, H., Spahn, N., Bortolameotti, R., Cova, M., & Continella, A. (2022). DEEPCASE: Semi-supervised contextual analysis of security events. U IEEE symposium on security and privacy (SP) (s. 522-539). 
    https://doi.org/10.1109/SP46214.2022.9833671
  10. Torres, L., Barrios, H., & Denneulin, Y. (2024). Evaluation of computational and energy performance in matrix multiplication algorithms on CPU and GPU using MKL, cuBLAS and SYCL. 14. https://doi.org/10.48550/arXiv.2405.17322
  11. Guo, H., Yuan, S., & Wu, X. (2021). LogBERT: Log anomaly detection via BERT. 13. 
    https://doi.org/10.1109/IJCNN52387.2021.9534113
  12. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. 15. https://doi.org/10.48550/arXiv.1706.03762
  13. Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. 5. https://doi.org/10.48550/arXiv.1910.01108
  14. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). ALBERT: A lite BERT for self-supervised learning of language representations. 17. https://doi.org/10.48550/arXiv.1909.11942
  15. Alizadeh, N., & Castor, F. (2024). Green AI: A preliminary empirical study on energy consumption in DL models across different runtime infrastructures. 6. 
    https://doi.org/10.1145/3644815.3644967
  16. Pierson, R., & Moin, A. (2025). Automated bug report prioritization in large open-source projects. 10. https://doi.org/10.48550/arXiv.2504.15912
  17. Kingma, D.P., & Welling, M. (2013). Auto-Encoding variational bayes. 14. https://doi.org/ 10.48550/arXiv.1312.6114
  18. Zhao, S., Song, J., & Ermon, S. (2017). Towards deeper understanding of variational autoencoding models. 14. https://doi.org/10.48550/arXiv.1702.08658
  19. Široký, F. (2019). Anomaly detection using deep sparse autoencoders for CERN particle detector data. https://is.muni.cz/th/ljgxi/BcPraceSiroky.pdf
  20. Dohi, K. (2020). Variational autoencoders for jet simulation. https://doi.org/10.48550/arXiv. 2009.04842
  21. Tang, T., Yao, J., Wang, Y., Sha, Q., Feng, H., & Xu, Z. (2025). Application of deep gene­rative models for anomaly detection in complex financial transactions.
    https://doi.org/10.1109/ICAID65275.2025.11034573
  22. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. 
    https://doi.org/10.3115/v1/D14-1179
  23. Gers, F. (2016). Recurrent nets that time and count. (s. 7).
    https://doi.org/10.1109/IJCNN.2000.861302
  24. Wang, Q., Ai, X., Zhang, Y., Chen, J., & Yu, G. (2022). HyTGraph: Gpu-accelerated graph processing with hybrid transfer management. 
    https://doi.org/10.1109/ICDE55515.2023.00049
  25. Jayanth, R., Gupta, N., & Prasanna, V. (2024). Benchmarking edge AI platforms for high-performance ML inference. 
    https://doi.org/10.1109/HPEC62836.2024.10938499
  26. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., & Soderstrom, T. (2018). Detec­ting spacecraft anomalies using lstms and nonparametric dynamic thresholding.
    https://doi.org/10.1145/3219819.3219845
  27. Bao, Q., Wang, J., Gong, H., Zhang, Y., Guo, X., & Feng, H. (2025). A deep learning approach to anomaly detection in high-frequency trading data. 
    https://doi.org/10.1109/ISCAIT64916.2025.11010680
  28. Mäntylä, M., Varela, M., & Hashemi, S. (2022). Pinpointing anomaly events in logs from stability testing - n-grams vs. deep-learning. 
    https://doi.org/10.1109/ICSTW55395.2022.00056
  29. Hochreiter, S. (1997). Long Short-Term Memory. 32. 
    https://doi.org/10.1162/neco.1997.9.8.1735
  30. Lindemann, B., Maschler, B., Sahlab, N., & Weyrich, M. (2021). A survey on anomaly detection for technical systems using LSTM networks. 
    https://doi.org/10.1016/j.compind.2021.103498
  31. Van Houdt, G., Mosquera, C., & Nápole, G. (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(1), 14. 
    https://doi.org/10.1007/s10462-020-09838-1
  32. Zhao, J., Huang, F., Lv, J., Duan, Y., Qin, Z., Li, G., & Tian, G. (2020). Do RNN and LSTM have Long Memory? https://doi.org/10.48550/arXiv.2006.03860
  33. Prater, R., Hanne, T., & Dornberger, R. (2024). Generalized Performance of LSTM in Time-Series Forecasting. Journal of Forecasting, 20. 
    https://doi.org/10.1080/08839514.2024.2377510
  34. Dai, J., Liao, M., & Guo, X. (2023). Research on the application of improved LSTM model in time series problems. U 2023 international conference on electronics, automation, and computer science (ICEACE) (s. 1544-1548). 
    https://doi.org/10.1109/ICEACE60673.2023.10442927
  35. Ghislieri, M., Cerone, G.L., Knaflitz, M., & Agostini, V. (2021). Long short-term memory (LSTM) recurrent neural network for muscle activity detection. Journal of NeuroEnginee­ring and Rehabilitation, 15. 
    https://doi.org/10.1186/s12984-021-00945-w
  36. Sennhauser, L., & Berwick, R.C. (2018). Evaluating the ability of lstms to learn context-free grammars. U Proceedings of the 32nd conference on neural information processing systems (neurips) (s. 115-124).
    https://doi.org/10.18653/v1/W18-5414
  37. Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and understanding recurrent networks. https://doi.org/10.48550/arXiv.1506.02078
  38. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., & Zhou, J. (2017). Patient Subtyping via Time-Aware LSTM Networks. U Proceedings of the 2017 ACM international conference on bioinformatics, computational biology, and health informatics (s. 65-74). 
    https://doi.org/10.1145/3097983.3097997
  39. Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S., Pei, S., & Zhou, R. (2019). LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs. U Proceedings of the 28th international joint conference on artificial intelligence (IJCAI-19) (s. 7).
    https://doi.org/10.24963/ijcai.2019/658
  40. Von Kügelgen, J., Sharma, Y., Gresele, L., Brendel, W., Schölkopf, B., Besserve, M., & Locatello, F. (2022). Self-Supervised learning with data augmentations provably isolates content from style. 32. https://doi.org/10.48550/arXiv.2106.04619
  41. Farzad, A., & Gulliver, T.A. (2019). Log message anomaly detection and classification using auto-b/lstm and auto-gru. 18. 
    https://doi.org/10.31224/osf.io/d4e6a
  42. Lundberg, S., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. 10. https://doi.org/10.48550/arXiv.1705.07874
  43. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. U Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (s. 13). 
    https://doi.org/10.1145/2939672.2939785
  44. Anghel, A., Papandreou, N., Parnell, T., De Palma, A., & Pozidis, H. (2018). Benchmar­king and optimization of gradient boosting decision tree algorithms. 7. https://doi.org/10.48550/arXiv.1809.04559
  45. XGBoost: Everything you need to know. (b. d.). https://neptune.ai/blog/xgboost-everything-you-need-to-know
  46. Zhang, J., Wang, R., Jia, A., & Feng, N. (2024). Optimization and application of xgboost logging prediction model for porosity and permeability based on k-means method. 18. 
    https://doi.org/10.3390/app14103956
  47. Boldini, D., Grisoni, F., Kuhn, D., Friedrich, L., & Sieber, S.A. (2023). Practical guidelines for the use of gradient boosting for molecular property prediction. 13.
    https://doi.org/10.1186/s13321-023-00743-7
  48. Frifra, A., Maanan, M., Maanan, H., & Rhinane, H. (2024). Harnessing LSTM and XGBoost algorithms for storm prediction. 13. 
    https://doi.org/10.1038/s41598-024-62182-0
  49. Fani Sani, M., Vazifehdoostirani, M., Park, G., Pegoraro, M., van Zelst, S.J., & van der Aalst, W.M.P. (2023). Performance-preserving event log sampling for predictive monito­ring. J intell inf syst, 53-82. 
    https://doi.org/10.1007/s10844-022-00775-9
  50. Wang, X., & Lu, X. (2020). A host-based anomaly detection framework using xgboost and LSTM for iot devices. 12. 
    https://doi.org/10.1155/2020/8838571
  51. Lobachev, I.M. (2021). Modeli ta metody pidvyshchennia efektyvnosti rozpodilenykh transdiusernykh merezh na osnovi mashynnoho navchannia ta peryferiinykh obchyslen. https://op.edu.ua/sites/default/files/publicFiles/dissphd/dysertaciya_lobachev_122.pdf
  52. XGBoost parameters. (b. d.). https://xgboost.readthedocs.io/en/stable/parameter.html
  53. Putatunda, S., & Rama, K. (2020). A modified bayesian optimization based hyper-para­meter tuning approach for extreme gradient boosting. 6. 
    https://doi.org/10.1109/ICInPro47689.2019.9092025
  54. XGBoost. (b. d.). https://www.nvidia.com/en-us/glossary/xgboost/
  55. Kukkala, V.K., Thiruloga, S.V., & Pasricha, S. (2021). LATTE: LSTM self-attention based anomaly detection in embedded automotive platforms. 24. https://doi.org/10.48550/arXiv.2107.05561
  56. AutoML for XGBoost. (b. d.). https://microsoft.github.io/FLAML/docs/Examples/AutoML- for-XGBoost/
  57. Chai, C., Lu, J., Jiang, X., Shi, X., & Zeng, Z. (2021). An automated machine learning (automl) method for driving distraction detection based on lane-keeping performance. 11. https://doi.org/10.48550/arXiv.2103.08311
  58. Elastic stack. (b. d.). https://www.elastic.co/elastic-stack

Full text: PDF

 

THE CONCEPT OF BUILDING A KNOWLEDGE GRAPH FOR HARMONIZING EDUCATIONAL AND PROFESSIONAL STANDARDS

N.V. Sytnyk, O.O. Denisova, I.S. Zinovieva

Èlektron. model. 2025, 47(6):34-57

https://doi.org/10.15407/emodel.47.06.034

ABSTRACT

The concept of creating a knowledge graph for harmonizing educational and professional standards in the context of training specialists in higher education institutions is presented. The main purpose of the knowledge graph is to provide a holistic approach to the analysis and integration of various standards applied in education and the professional environment. A competence-oriented approach is used to construct the knowledge graph, which allows identifying the key competences necessary for the development of qualifications in various professional fields. The proposed graph covers educational standards, in accordance with the list of university specialties, and professional standards in accordance with the National Classification of Professions, which opens up opportunities for further research in this area. The development of such a graph will enable a comprehensive, integrated approach to the centralized storage of relevant information at the national level and the study of the interrelationships between professional and educational standards. This, in turn, will improve the quality of training for specialists, ensure greater flexibility and adaptability in responding to changes in the requirements of the labor market and professional environment, and improve the quality and relevance of educational programs.

KEYWORDS

educational and professional standards, graph technologies, knowledge graph, NoSQL graph database, Neo4j DBMS.

REFERENCES

  1. World Economic Forum. (2025). Future of jobs report 2025 (Insight report). https://reports.weforum.org/docs/WEF_Future_of_Jobs_Report_2025.pdf.
  2. World Economic Forum. (2023). The future of jobs report 2023. https://www.weforum.org/publications/the-future-of-jobs-report-2023.
  3. European Commission (2016). European skills agenda. https://employment-social-affairs.ec.europa.eu/policies-and-activities/skills-and-qualifications/european-skills-agenda_en.
  4. European Commission (2025). The union of skills. https://employment-social-affairs.ec.europa.eu/document/download/915b147d-c5af-44bb-9820-c252d872fd31_en?filename= Communication%20-%20Union%20of%20Skills.pdf.
  5. Cedefop (2024). 2024 European skills index: Technical report. https://www.cedefop.europa.eu/ files/esi_technical_report_2024.pdf.
  6. OECD (2024). Understanding skill gaps in firms: Results of the PIAAC employer module (OECD Skills Studies). OECD Publishing. https://doi.org/10.1787/b388d1da-en.
  7. Gartner (2024). Top 5 HR trends and priorities that matter most in 2025. https://www.gartner.com/en/human-resources/trends/top-priorities-for-hr-leaders.
  8. National Institute for Strategic Studies (2024). Key characteristics of the Ukrainian labor market in the first half of 2024. https://niss.gov.ua/doslidzhennya/sotsialna-polityka/osnovni-kharakterystyky-rynku-pratsi-ukrayiny-u-pershomu.
  9. Deloitte (2023). Trends in the field of human capital 2023: New rules for a borderless world. https://www2.deloitte.com/content/dam/Deloitte/ua/Documents/human-capital/2023-human-capital-trends-presentation.pdf.
  10. Deloitte (2024). 2024 global human capital trends. https://www2.deloitte.com/content/dam/insights/articles/glob176836_global-human-capital-trends-2024/DI_Global-Human-Capital-Trends-2024.pdf.
  11. Verkhovna Rada of Ukraine (2017). Law of Ukraine "On Education" No. 2145-VIII, adopted on September 5, 2017. https://zakon.rada.gov.ua/laws/show/2145-19#Text.
  12. Ministry of Digital Transformation of Ukraine (2021). Express analysis of the current state of IT education in Ukraine. https://surl.li/tscldz.
  13. National Qualifications Agency (2023). Methodological recommendations for the development of professional standards. https://nqa.gov.ua/uploads/multiple-input/63d3be768f7b1.pdf.
  14. Verkhovna Rada of Ukraine (2014). Law of Ukraine "On Higher Education" No. 1556-VII, adopted on July 1, 2014. https://zakon.rada.gov.ua/laws/show/1556-18#Text.
  15. Ministry of Education and Science of Ukraine (2017). Methodological recommendations for the development of higher education standards. https://mon.gov.ua/static-objects/mon/sites/1/vishcha-osvita/rekomendatsii-1648.pdf.
  16. State Committee of Ukraine for Technical Regulation and Consumer Policy (2010). National Classifier of Occupations of Ukraine DK 003:2010. https://zakon.rada.gov.ua/rada/show/va327609-10#Text.
  17. UNESCO Institute for Statistics (2015). International standard classification of education: Fields of education and training 2013 (ISCED-F 2013) — Detailed field descriptions. https://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-fields-of-education-and-training-2013-detailed-field-descriptions-2015-en.pdf.
  18. EHEA (2005). The framework of qualifications for the European Higher Education Area. https://ehea.info/media.ehea.info/file/WG_Frameworks_qualification/85/2/Framework_qualificationsforEHEA-May2005_587852.pdf.
  19. European Union (2017). Council recommendation of 22 May 2017 on the European Qualifications Framework for lifelong learning. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017H0615%2801%29.
  20. Cabinet of Ministers of Ukraine (2011). Approval of the National Qualifications Framework: Resolution No. 1341 of November 23, 2011
    https://doi.org/10.1055/s-0031-1289365
  21. National Agency for Higher Education Quality Assurance (2022). Procedure for approval of draft higher education standards. https://surl.lu/dkwgmz.
  22. Ministry of Education and Science of Ukraine (2020). Regulations on accreditation of edu­cational programs: Order No. 768 of June 10, 2020. https://zakon.rada.gov.ua/laws/show/z1013-24#Text.
  23. National Agency for Higher Education Quality Assurance (2024). Clarification on the application of quality assessment criteria for educational programs: Methodical manual. https://surl.li/hutczz.
  24. Skyba, Y. (2023). 21st-century skills: Adaptation of educational programs of domestic higher education institutions. Problems of Education, 2(99), 72-88. 
    https://doi.org/10.52256/2710-3986.2-99.2023.05
  25. Palekhova, V. (2020). Mismatch between education and labor market demands (example of trade and related fields). Economic Discourse, 3, 117-126. 
    https://doi.org/10.36742/2410-0919-2020-3-12
  26. Kovaliuk, T.V. (2017). Harmonization of professional and educational IT standards requirements to graduates’ competencies. Bulletin of the National University "Lviv Polytechnic". Series: Information Systems and Networks, 872, 229-240. http://nbuv.gov.ua/ UJRN/VNULPICM_2017_872_27.
  27. Denisova, O., Sytnyk, N., & Zinovieva, I. (2025). Aligning computer engineering curricula to meet digital economy requirements: Interdisciplinary aspect. In M.E. Auer & T. Rüütmann (Eds.), Futureproofing engineering education for global responsibility (Vol. 1261). Springer. 
    https://doi.org/10.1007/978-3-031-85649-5_14
  28. Proskura, S.L., & Lytvynova, S.H. (2019). Formation of professional competence of future bachelors in computer science. Physical and Mathematical Education, 2, 137-146. http://nbuv.gov.ua/UJRN/fmo_2019_2_24.
  29. Springboard for Business (2024). The skills gap in the U.S. workforce. https://www.springboard.com/blog/business/skills-gap-trends-2024.
  30. Abir, T., Islam, R., Ullah, A., & Rahman, S. (2024). Aligning education with market demands: A case study of marketing graduates from Daffodil International University. International Journal of Learning, Teaching and Educational Research, 23(8). 
    https://doi.org/10.26803/ijlter.23.8.8
  31. The National Agency for Higher Education Quality Assurance (2024). The national action plan on Ukrainian external higher education quality assurance for 2024–2026 period. https://naqa.gov.ua/wp-content/uploads/2024/07/National-Action-Plan-2024-2026.pdf.
  32. OECD (2022). Enhancing labour market relevance and outcomes of higher education: Country note Austria (OECD Education Policy Perspectives). https://surl.li/iknukh.
  33. Van Noy, M., & Cleary, J. (2017). Aligning higher education and the labor market: Gui­ding principles and open questions (Issue Brief). Rutgers Education and Employment Research Center. https://smlr.rutgers.edu/sites/default/files/Documents/Centers/EERC/eerc_lma_issue_brief_final%20%281%29.pdf.
  34. EHEA (2003). Tuning educational structures in Europe: Final report. Phase one. https://ehea.info/media.ehea.info/file/Tuning_project/92/5/Tuning-Phase1-Final-Report_575925.pdf.
  35. CEN (2019). EN 16234-1:2019. e-Competence Framework (e-CF) – A common European framework for ICT professionals in all sectors – Part 1: Framework. https://standards.cencenelec.eu/dyn/www/f?p=205:110:0::::FSP_PROJECT:67073&cs=15E62ED24D608A 5F10D6BEE8E6D50FA10.
  36. CEN (2022). EN 17748-1:2022. Foundational body of knowledge for the ICT profession (ICT BoK) — Part 1: Body of Knowledge. https://standards.cencenelec.eu/dyn/www/f?p=205:110:0::::FSP_PROJECT:71369&cs=1C8337CE362C20D0C56CB36396F55FFEF.
  37. CEN (2022). CEN/TS 17834:2022. European professional ethics framework for the ICT profession (EU ICT Ethics). https://standards.cencenelec.eu/dyn/www/f?p=205:110:0:::: FSP_PROJECT:72945&cs=143808EC8056B6A9CF985184835B6F7A9
  38. CEN. (2018). CWA 16458-1:2018. European ICT Professional Role Profiles version 2 — Part 1 Full Descriptions. https://www.cencenelec.eu/media/CEN-CENELEC/AreasOfWork/ CEN%20sectors/Digital%20Society/CWA%20Download%20Area/ICT_SkillsWS/16458-1.pdf.
  39. CEN (2022). CEN/TS 17699:2022. Guidelines for developing ICT professional curricula as scoped by EN 16234-1 (e-CF). https://standards.cencenelec.eu/dyn/www/f?p=205: 110:0::::FSP_PROJECT:72363&cs=1825944F2586B5DDEE73CE814B769E7AD
  40. Tempus ALIGN Project. (n.d.). Project website. http://tempus.univ.kiev.ua/align.
  41. Reif, J., Stegeman, J., & Sanoja, D. (2021). The developer’s guide: How to build a knowledge graph (Whitepaper). Neo4j, Inc. https://neo4j.com/whitepapers/developers-guide-how-to-build-knowledge-graph.
  42. Stegeman, J. (2024). What is a knowledge graph? https://neo4j.com/blog/what-is-knowledge-graph.
  43. Fettach, Y., Ghogho, M., & Benatallah, B. (2022). Knowledge graphs in education and employability: A survey on applications and techniques. IEEE Access, 10, 80174-80183. 
    https://doi.org/10.1109/ACCESS.2022.3194063
  44. Fettach, Y., Bahaj, A., & Ghogho, M. (2024). JobEdKG: An uncertain knowledge graph-based approach for recommending online courses and predicting in-demand skills based on career choices. Engineering Applications of Artificial Intelligence, 131, Article 107779.
    https://doi.org/10.1016/j.engappai.2023.107779
  45. Cabinet of Ministers of Ukraine (2015). List of fields of knowledge and specialties of higher education: Resolution No. 266 of April 29, 2015. https://zakon.rada.gov.ua/laws/ show/266-2015-%D0%BF#n11.
  46. Ministry of Education and Science of Ukraine (2019). Higher education standard of Ukraine of the first (bachelor’s) level in the specialty 122 "Computer Science". https://mon.gov.ua/static-objects/mon/sites/1/vishcha-osvita/zatverdzeni%20standarty/2019/07/12/122-kompyut.nauk.bakalavr-1.pdf.
  47. Ministry of Economy of Ukraine (2010). National Classifier of Occupations of Ukraine DK 003:2010. https://hrliga.com/docs/KP-2010_zpz13.htm.
  48. Administration of the State Service of Special Communications and Information Protection of Ukraine (2022). Professional standard "Network and Systems Administrator". https://register.nqa.gov.ua/uploads/0/434-profesijnij_standart_administrator_merez_i_sistem.pdf.
  49. DB-Engines (2025). DB-Engines ranking of graph DBMS. https://db-engines.com/en/ranking/graph+dbms.
  50. Zinovieva, I., Sytnyk, N., Denisova, O., & Artemchuk, V. (2024). Support for the development of educational programs with graph database technology. In A. Semenov, I. Yepifanova, & J. Kajanová (Eds.), Data-centric business and applications (Lecture Notes on Data Engineering and Communications Technologies, Vol. 195). Springer. 
    https://doi.org/10.1007/978-3-031-54012-7_14

Full text: PDF

 

APPLICATION OF MACHINE LEARNING METHODS IN PREDICTING FACTORS INDICATING POTENTIAL CLUSTER PARTITIONING

D.P. Sinko, K.D. Sinko

Èlektron. model. 2025, 47(6):58-68

https://doi.org/10.15407/emodel.47.06.058

ABSTRACT

It is considered how to use Python in the author's approach, which was suggested in the work. [1]. The results of numerical modeling showed that the Random Forest and CatBoost methods did the best job of predicting factors of point to potential cluster partitioning. Based on the modeling results, conclusions were made that allow architects of complex cluster cybernetic systems to use the proposed approach as a working tool to prevent critical system conditions associated with network partitioning.

KEYWORDS

split brain problem, cluster splitting problem (CSP), partitioning, ML algorithms, cluster.

REFERENCES

  1. Sinko, D.P. & Sinko, K.D. (2025). Analysis of the applicability of machine learning methods in solving the problem of predicting the implementation of cluster batching factors. Electron. modeling, 47(1), 22-39. 
    https://doi.org/10.15407/emodel.47.01.022
  2. Bhuiyan, S., & Zheludkov, M. (2019). Apache ignite book. Lulu Press, Inc [Accessed: 04.01.2025].
  3. Twu, P., Egerstedt, M., & Martini, S. (2010). Controllability of homogeneous single-leader networks. У 49th IEEE conference on decision and control (CDC) (с. 5869-5874). 
    https://doi.org/10.1109/CDC.2010.5718103
  4. Zhao, M., Lin, T., Mi, F., Jaggi, M., & Schütze, H. (2020). Masking as an efficient alternative to finetuning for pretrained language models. ArXiv. 
    https://doi.org/10.18653/v1/2020.emnlp-main.174
  5. Barabash, O.V. (2024). Comparative analysis of the approximation of a probabilistic indicator of functional stability using Bernstein polynomials and feedforward neural networks. Connectivity, 169(3). 
    https://doi.org/10.31673/2412-9070.2024.033237
  6. Sahai, T., Speranzon, A., & Banaszuk, A. (2009). Hearing the clusters in a graph: A distributed algorithm. URL: https://doi.org/10.48550/arXiv.0911.4729 [Accessed: 25.04.2025].
  7. Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. 
    https://doi.org/10.1023/A:1010933404324
  8. He, Z., Lin, D., Lau, T., & Wu, M. (2019). Gradient Boosting Machine: A Survey. arXiv. https://doi.org/10.48550/arXiv.1908.06951 [Accessed: 11.02.2025].
  9. Hancock, J.T., & Khoshgoftaar, T.M. (2020). CatBoost for big data: An interdisciplinary review. Journal of Big Data, 7, 94. 
    https://doi.org/10.1186/s40537-020-00369-8
  10. PSnik-Kostiantyn. (2025). SplitBrainDetector. https://github.com/PSnik-Kostiantyn/SplitBrainDetector [Accessed: 20.06.2025].

Full text: PDF