I.V. Melnyk
ABSTRACT
The algorithm of simulation and the method of optimization of the guiding system of impulse electron beam, formed by the glow discharge electron guns, are presented in the article. It is shown that for optimized choice of guiding channel geometry and position of focusing magnetic lenses the beam current loss, caused by the settlement of beam electrons on the channels’ walls is lower, than 0.1%.
KEYWORDS
electron-beam technologies, electron gun, impulse electron beam, high voltage glowing charge, ion focusing, scattering of electrons, pinch effect.
REFERENCES
1. Denbnovetsky, S.V., Melnyk, V.I., Melnyk, I.V. and Tugay, B.A. (2005), “Gas discharge electron guns and their use in industry”, Elektronika i svyaz, Them. iss. Problemy elektroniki,
Part 2, pp. 84-87.
2. Denbnovetsky, S.V., Melnyk, V.I., Melnyk, I.V. and Tugay, B.A. (2003), “Model of control of glow discharge electron gun current for microelectronics production applications”, Proceedings
of SPIE. Sixth International Conference on Material Science and Material Properties for Infrared Optoelectronics, Vol. 5065, pp. 64-76.
3. Denbnovetskiy, S.V.,Melnyk,V.G.,Melnyk, I.V. et al. (2013), “Investigation of electron-ion optics of pulsed technological glow discharge electron guns”, XXXIII IEEE International
Scientific Conference «Electronics and Nanotechnology» (ELNANO), Kyiv, April 16-19, 2013, pp. 420-424.
4. Melnyk, I.V. (2013), “Generalized procedure of modeling of triode electron sources of high voltage glow discharge”, Elektronnoe modelirovanie, Vol. 35, no. 4, pp. 93-107.
5. Melnyk, I.V. (2013), “Estimation of time of increase of high voltage glow discharge current in the triode electron system under supply of control impulse”, Izvestiya vuzov. Radioelektronika,
Vol. 56, no. 12, pp. 51-61.
6. Ladokhin, S.V., Levitsky, N.I., Chernyavsky, V.B. et al. (2007), Elektronno-luchevaya plavka v liteinom proizvodstve [Electron-beam melting in foundry], Stal, Kiev, Ukraine.
7. Grechanyuk, M.I., Melnyk, A.G., Grechanyuk, I.M. et al. (2014), “Modern electron beam technologies and equipment for melting and physical vapor deposition of different materials”, Elektrotekhnica i elektronica (E+E), Vol. 49, no. 5-6, pp. 115-121.
8. Mattausch, G., Zimmermann, B., Fietzke, F. et al. (2014), “Gas discharge electron sources – proven and novel tools for thin-film technologies”, Elektrotekhnica i elektronika (E+E), Vol. 49,
no. 5-6, pp. 183-195.
9. Feinaeugle, P., Mattausch, G., Schmidt, S. and Roegner, F.H. (2011), “A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate
PVD”, Society of Vacuum Coaters, 54-th Annual Technical Conference Proceedings, Chicago, 2011, pp. 202-209.
10. Yarmolich, D., Nozar, P., Gleizer, S. et al. (2011), “Characterization of deposited films and the electron beam generated in the pulsed plasma deposition gun”, Japanese Journal of Applied
Physics, Vol. 50, 08JD03.
11. Mattausch, G., Scheffel, B., Zywitzki, O. et al. (2012), “Technologies and tools for the plasma-activated EB high-rate deposition of zirconium”, Elektrotekhnika i elektronika (E+E),
Vol. 47, no. 5-6, pp. 152-158.
12. Toaler, D., Oane, M., Mihaleusku, I. et al. (2012), “Beam dynamics: a new computational approach”, Elektrotekhnika i elektronika (E+E), Vol. 47, no. 5-6, pp. 33-35.
13. Reisgen, U., Olschok, S., Ufer, S. (2014), “Accurate diagnostic of electron beam characteristics”, Elektrotekhnika i elektronika (E+E), Vol. 49, no. 5-6, P. 40-45.
14. Melnyk, I.V. (2001), “Modeling of guiding of electron beams from the range of low vacuum to the range of high one in equipotential channel”, Elektronnoe modelirovanie, Vol. 23, no. 4,
pp. 82-92.
15. Denbnovetskiy, S.V., Melnyk, V.I. andMelnyk, I.V. (2008), “Peculiarities of modeling guidance of short focus electron beams from low to high vacuum in focusing field of short magnetic
lenses”, Elektronika i svyaz, Them. iss. Problemy elektroniki, Part 1, pp. 108-113.
16. Melnyk, I.V. (2010), “Method of modeling guidance short-focus electron beams in equipotential channel with allowance for spread of thermal electron velocity“, Elektronika i svyaz,
no. 2 (55), pp. 38-44.
17. Denbnovetsky, S.V., Melnyk, V.I., Melnyk, I.V. and Tugay, B.A. (2010), “Method of modeling guidance short-focus electron beams from low to high vacuum with allowance for
spread of thermal electron velocity”, Prikladnaya fizika, no. 3, pp. 84-90.
18. Norenkov, I.P. and Manichev, V.B. (1990), Osnovy teorii i proektirovaniya SAPR [Grounds of theory and design ACPS], Vysshaya shkola, Moscow, Russia.
19. Vasiliev, V.P. (1988), Chislennye metody resheniya ekstremalnykh zadach: Uchebnoe posobie dlya vuzov [Numerical methods of solving extremal problems. Manual for Higher
Educational Institutions], Nauka, Moscow, Russia.
20. Samarsky, A.A. and Gulin, A.V. (1989), Chislennye metody. Uchebnoe posobie dlya vuzov [Numerical methods. Manual for Higher Educational Institutions], Nauka, Moscow, Russia.
21. Melnyk, I.V. (2009), Systema naukovo-tekhnichnykh rozrakhunkiv MatLab ta ii vykorystannya dlya rozvyazannya zadach iz elektroniki. Navchalny posibnyk u 2 tomakh. T. 2. Osnovy
programuvannya ta rozvyazannya prykladnykh zadach [System of scientific and technical calculations MatLab and its use for solving problems in electronics.Manual in 2 volumes. Vol. 2,
Grounds of programming and solution of applied problems], Universytet “Ukraina”, Kiev, Ukraine.
22. Melnyk, I.V. and Tugay, S.B. (2009), “Modeling of geometry of anode plasma boundary in triode electrode systems of high-voltage glow charge”, Elektronnoe modelirovanie, Vol. 34,
no. 1, pp. 15-28.