Yu.N. Gruts
ABSTRACT
The theory of stereo conversion is based on the application of twomutually inverse formal mathematical operators (stereo operators). The direct and inverse stereo operators install a one-to-one correspondence between three-dimensional coordinates of any point in space and the stereo coordinates
which can be displayed on the screen under the conditions of constant point of view. In this paper direct and inverse operators of stereo conversion have been applied to the analyses of two kinds of 3D-systems containing a flat mirror. The first kind is when the screen is located to the right of the observer at arbitrary angle. The second kind is when the screen is located above the observer at arbitrary angle. Such conditions and the coordinates of the observer location in front of the mirror have been obtained to satisfy the requirements of the visualization equivalence of stereo systems with themirror and without mirror.
KEYWORDS
stereo conversion theory, stereo operator, 3D SLR system.
REFERENCES
1. Mitsumoto H., Tamura S., Okazaki K. et al. 3d-reconstruction using mirror images based on a plane symmetry recovery method // IEEE Transactions on Pattern Analysis and Machine Intelligence.— 1992.— Vol. 14, No 9.— P. 941—945.
2. Goshtasby A., Gruver W.A. Design of a single-lens stereo camera system // Pattern Recognition.— 1993.— Vol. 26, No 6. — P. 923—937.
3. Gluckman J., Nayar S.K. Catadioptric stereo using planar mirrors // Intern J. Comput. Vision. 2001.— Vol. 44. – P. 65—79
4. Nayar S.K. Robotic vision system. United States Patent 4,893,183.— 1988.
5. Gluckman J., Nayar S.K., Thoresz K.J. Real-time omnidirectional and panoramic stereo // Proc. DARPA Image UnderstandingWorkshop.—San Francisco: Morgan Kaufman, 1998.— P. 299—303.
6. Nene S.A., Nayar S.K. Stereo with mirrors // Proc. Sixth Intern Conf. on Computer Vision (ICCV) .—Washington, DC, USA.—Los Alamitos: IEEE Computer Society, 1998.— P. 1087.
7. Chaen A., Yamazawa K., Yokoya N., Takemura, H. Omnidirectional stereo vision using hyperomni vision. // Technical Report.— IEICE, 1997. — P. 96—122 (in Japanese).
8. Teoh W., Zhang X.D. An inexpensive stereoscopNishimoto Y. and Shirai Y. // A feature-based stereo model using small disparities. — 1987. — P. 192—196.
9. Murray D.W. Recovering range using virtual multicamera stereo // Computer Vision and Image Understanding. — 1995.— Vol. 61, No 2. — P. 285—291.
10. Rassel K. Real volum image // Computerword Russia.—2002.—P. 28—29. [Electronic resource]. — Mode access: http://www.osp.ru/cw/2002/28-29/54537/.
11. Gruts Yu..N. Stereoscopic computer grafics. — Kiev: Nauk. Dumka, 1989. — 169 p. (in Russian).
12. Gruts Yu. N., Evdokimov V.F. Mathematical model analysis of stereo image // Eelectronic modeling.— 2001.— Vol. 23, No 6. — P. 106—112 (in Russian).
13. Gruts Yu..N., Jung-Young Son. Stereoscopic operator and its application // J. of Optical Society of Korea. — 2001.— Vol. 5, No 3. — Ð. 90—97.
14. Gruts Yu.N. Mathematical model for analysis of images in stereos with stereo cameras and stereo projectors to angle // Modeling and Informatic Technologies. — Kyiv: IPME NAS Ukraine, 2001.— Iss.14. — P. 85—98 (in Russian).