Simulation of Volt-Ampere Characteristics of Non-independent Additional Discharge in Triode Gas Discharge Electron Guns

MELNIK I.V., TUGAY S.B.

ABSTRACT

Analytical relations, which allow calculating energy parameters of additional discharge in triode high-voltage glow discharge electron guns, are given in this article. The proposed calculation technique is based on analyzing of ions balance in the anode plasma of high-voltage glow discharge on condition of its burning independence. Main advantages of the proposed model are its simplicity and generality. The results of simulation show, that in triode glow discharge electron guns power of additional discharge is lower than 1% relative to that of the main discharge. However, the stability of operation of triode glow discharge electron guns is considerably greater, than for diode ones. The performed investigations have confirmed the promising character of elaboration of triode glow discharge electron guns and their introduction into industry.

KEYWORDS

electron-beam technology, discharge electron gun, high voltage glow discharge, the auxiliary discharge, the anode plasma.

REFERENCES

  1. Zavyalov, M.A, Kreyndel, Yu.E., Novikov, A.A. and  Shanturin, L.P.(1989),  Plazmennyye protsessy v tekhnologicheskikh elektronnykh pushkakh [Plasma processes in technological electron guns],  Energoatomizdat,  Moscow, Russia.
  2. Ladokhin, S.V., Levitskiy, N.I., Chernyavskiy, V.B. and  et al. (2007),  Elektronno-luchevaya plavka v liteynom proizvodstve  [Electron beam melting in foundries], Stal, Kiev, Ukraine.
  3. Denbnovetskiy, S.V., Melnik, V.I., Melnik,I.V. and  Tugay, B.A. (2005), “ Discharge electron guns and their use in industry”,  Elektronika i svyaz. Tematicheskiy vypusk «Problemy elektroniki». CH. 2, Part 2,  pp. 84-87.
  4. Melnik, I.V., Tugay, B.A. and  Tugay, S.B. (2002), “Improve the stability of the electromagnetic inlet valve in the system of automatic control of the discharge current gun”,  Elektronika i svyaz, no.  14, pp. 172-175.
  5. Shiller, Z., Gayzig, U. and  Pantser, Z. (1980), Elektronno-luchevyye tekhnologii [Electron beam technology], Energiya. Moscow, Russia.   
  6. Denbnovetskiy, S.V, Melnik, V.I., Melnik, l.V. and  Tugay, В.A.  (1998), „Investigation of Forming of Elec­tron Beam in Glow Discharge Electron Guns with Additional Electrode“, XVIII  Intern. Symposium on Discharges and Electrical Insulation in Vacuum (XVIII ISDEIV),  August 17-21, 1998, The Netherlands, Proceedings,  Vol. 2,  Eindhoven Technical University Edition, 1998, pp. 637-640.
  7. Melnik, I.V. and  Tugay, S.B. (2012), “Modeling  geometry of the boundary of the anode plasma in triode electrode systems high voltage glow discharge”,  Elektronnoe modelirovanie, Vol. 34, no.  1, pp. 15-28.
  8. Novikov, A.A. (1983), Istochniki elektronov vysokovoltnogo tleyushchego razryada s anodnoy plazmoy [Sources of electrons with high voltage glow discharge plasma anode], Energoatomizdat, Moscow, Russia.
  9. Denbnovetskiy, S.V., Felba, J.,  Melnik, V.I., Melnik, I.V. (1997), „Model Of Beam Formation in а Glow Discharge Electron Gun with a Cold Cathode“, Applied Surface Science, Vol.  111, pp. 288-294.
  10. Rayzer, Yu.P. (1987), Fizika gazovogo razryada. Uchebnoye rukovodstvo  [Physics of gas discharge. Tutorial],  Nauka, Moscow, Russia.
  11. Granovskiy, V.L. (1971),  Elektricheskiy tok v gaze. Ustanovivshiysya tok  [Electric current in the gas. Steady current], Nauka, Moscow, Russia.
  12. Melnik, I.V. (2007), “Classification models of electron-optical systems in terms of methodology CAD”,  Elektronika i svyaz, Vol.  37, no.  2, pp. 20-31.
  13. Bronshteyn, I.N. and  Semendyaev, K.A.  (1981), Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov  [Handbook on mathematics for engineers and students of technical colleges], Nauka, Moscow, Russia.

Full text: PDF (in Russian)