Electronic modeling

Vol 43, No 1 (2021)

 

CONTENTS

Mathematical Modeling and Computation Methods

  SHEVCHENKO S.S.
Mathematical Model and Calculation Method of a Shaftless Pump with Seals-Bearings


3-16
  PILKEVYCH I.A., BOYCHENKO O.S., LOBODA V.V., GLADICH R.I.
Mathematical Model As-Sessment of Knowledge Level Users Information and Telecommuni-Cation System

17-27

Computational Processes and systems

  EFANOV D.V., SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V.
The Self-Checking Concurrent Error-Detection Systems Synthesis Based on the Boolean Complement to the Bose-Lin Codes with the Modulo Value M=4

28-45

Application of Modeling Methods and Facilities

  ZHARKIN A.F., NOVSKIY V.O., POPOV V.A., YARMOLIUK O.S., HAWKAR AHMED NOORY.
Review of Technologies for Controlling the Modes of Operation of 6 ... 20 kV Electrical Networks with Distributed Energy Sources


46-66
  BAKALYNSKYI O., TSYPLYNSKYI Yu., NECHAYEVA I., DUBOK V.
The Results of a Statisti-Cal Study of the State of Cyber Protection of the Critical Infor-Mation Infrastructure of Ukrainer


67-80
  VASYLIUK Y., ZINCHENKO Y., GNATIUK S., SOFIIENKO I., PETROVA D.
Use of Modern Shielding Properties Materials for Technical Protection of Infor-Mation


81-96
  ZUBOK V.Yu.
Empirical Results of Forming an Effective Topology in the Internet Based on the Global Routing System Security Assessments


97-106
  TAGHIYEVA A.D.
Approach to the Solution of the Optimum Control Problem of the Water Supply System


107-116 
  UZDENOV T.A.
Simulator of Task Sheduling in Geographically Distributed Computer Systems with Non-Alienable Resources

117-129 

MATHEMATICAL MODEL AND CALCULATION METHOD OF A SHAFTLESS PUMP WITH SEALS-BEARINGS

S.S. Shevchenko, A.S. Shevchenko

Èlektron. model. 2021, 43(1):03-16

ABSTRACT

Groove seals, in addition to their main purpose, which is to limit the crossflows between cavities with different pressures, can be used as rotor supports. An example of the use of groove seals as supports are shaftless pumps. A model of a shaftless pump has been constructed, demonstrating its advantages, which are the absence of contacts between a rotating impeller and a stationary casing. The static and flow characteristics of the pump with seals-bearings has been built. An analysis of the dynamics of a shaftless cradle-mounted pump with a combined support-balancing and sealing unit was carried out, which showed that the pump has a sufficient margin of vibration reliability.

KEYWORDS

seals-bearings, shaftless pump, static computation, vibration characteristics.

REFERENCES

  1. Gorovoy, S.A. (1996), “Development and research of designs of shaftless centrifugal pumps”, Proceedings of the VIII International Sci. conf. PUMPS-96, Vol. 2, pp. 232-241, Sumy, Rizocentr SSU.
  2. Kundera, Cz. and Martsinkovsky, V.А. (2014), “Static and dynamic analysis of a pump impeller with a balancing device. Part 1: Static analysis”, J. of Applied Mechanics and Engineering, Vol. 19, No. 3, pp. 609-619.
    https://doi.org/10.2478/ijame-2014-0042
  3. Jędral, W. (2001), Pompy wirowe [Rotodynamic Pumps], Wydawnictwo Naukowe PWN, Warsaw, Poland.
  4. Martsinkovsky, V.A. (1980), Beskontaktnyye uplotneniya rotornykh mashin [Non-contact seals for rotary machines], Mashinostroyeniye, Moscow, USSR.
  5. Martsinkovsky, V.A. and Shevchenko, S.S. (2018), Nasosy atomnykh elektrostantsiy: raschet, konstruirovaniye, ekspluatatsiya [Pumps of nuclear power plants: calculation, design, operation], Universitetskaya kniga, Sumy, Ukraine.
  6. Marcinkowski, W. and Kundera, Cz. (2008), Teoria konstrukcji uszczelnien bezstykowych [Theoryof constructionof noncontact sealing], Wyd-wo Politechniki Swiętokrzyskiej, Kielce, Poland.
  7. Martsinkovsky, V., Zhulyov, A. and Kundera, Cz. (2014), “Static and dynamic analysis of a pump impeller with a balancing device. Part 11: Dynamic analysis”, J. of Applied Mechanics and Engineering, Vol. 19, No. 3, pp. 621-631.
  8. Marcinkowski, W. and Korczak, A. (2004), “Szczeliny tarczy odciążającej napór osiowy i ich wplyw na dynamikę zespolu wirującego pompy odśrodkowej wielostopniowej”, X Int. Conf. Seals and Sealing Technology in Machines and Devices, Wroclaw, SIMP, 2004, рp. 318-328.
    https://doi.org/10.2478/ijame-2014-0043
  9. Gudkow, S., Marcinkowski, W., Korczak, A. and Kundera, Cz. (2013), “Pompa odśrodkowa z wirnikiem łożyskowanym w szczelinach uszczelniających”, X1II Int. ScientificTechnical Conference. Seals and Sealing Technology of Machines and Dewices, Wroclaw, SIMP, pp. 178-187.
  10. Martsinkovsky, V.A. (2012), Dinamika rotorov tsentrobezhnykh mashin [Dynamics of rotors of centrifugal machines], Izdatelstvo SumGU, Sumy, Ukraine.

Full text: PDF

 

MATHEMATICAL MODEL ASSESSMENT OF KNOWLEDGE LEVEL USERS INFORMATION AND TELECOMMUNICATION SYSTEM

I.A. Pilkevych, O.S. Boychenko, V.V. Loboda, R.I. Gladich

Èlektron. model. 2021, 43(1):17-27

ABSTRACT

The regulatory documents regulating issues of information protection in information and telecommunication systems have been analyzed. The purpose of scientific research is to assess the level knowledge of users the information and telecommunication system based on the results of their test tasks. To achieve it, methods modern test theory were applied and initial data were determined. It is proposed for assessment level knowledge of users information-telecommu­nication system using scale of test results. The limits the test results scale are defined, which depend on the number of qualitative measures level knowledge assessment. The mathematical dependence test complexity on the number of tasks different level complexity is shown. A mathematical model for assessing the level knowledge of users information and telecommunication system has been developed, which takes into account the quality of response to tasks different levels complexity. The adequacy of the developed mathematical model for three users was checked, according to the results test, it was established that a qualitative response to tasks of the highest level complexity provides a large quantitative assessment of the level knowledge. An example of determining the limits the test results scale for three qualitative indicators of the knowledge level users the information and telecommunication system is given.

KEYWORDS

internal intruder, model of intruder, information protection, mathematical model.

REFERENCES

  1. Order of the Department of Special Telecommunication Systems and Information Protection Security Services of Ukraine №. 22 dated April 28, 1999, “General provisions to protect information in computer systems from unauthorized access”, ND TZI 1.1-002-99, available at: http://dsszzi.gov.ua/dsszzi/doccatalog/document?id=106340, (accessed: May 12, 2020).
  2. Order of the Department of Special Telecommunication Systems and Information Protection of the Security Service of Ukraine № 125 dated November 08, 2005, “Procedure for work on the creation of an integrated information protection system in the information and telecommunications system”, LP TSO 3.7-003-05, available at: http://www.dsszzi.gov.ua/ control/uk/publish/article?art_id=46074, (accessed: May 12, 2020).
  3. Resolution of the Cabinet of Ministers of Ukraine № 373 dated March 29, 2020, “On approval of the Rules for Ensuring the Protection of Information in Information, Telecommunication and Information-Telecommunication Systems”, available at: http:// www.zakon.rada.gov.ua/ laws/show/373-2006 -% DO, (accessed: May 12, 2020).
  4. Order of the Department of Special Telecommunication Systems and Information Protection of the Security Service of Ukraine № 53 dated December 04, 2000, “Standard provision on the information protection service in an automated system", LP TSO 1.4-001-2000, available at: http://www.tzi.com.ua/downloads/1.4-001-2000.pdf, (accessed: May 12, 2020).
  5. Panchenko, V.A. (2018), “Mechanism against insiders in the personnel security system”, Naukovyy visnyk Lʹvivsʹkoho derzhavnoho universytetu vnutrishnikh sprav, Vol. 1, pp. 219-
  6. Boychenko, A.S., Gumenyuk, I.V. and Gladich, R.I. (2019), “Mathematical model for assessing the risk of unauthorized access to information by users of the information and telecommunications system”, Problemy stvorennya, vyprobuvannya, zastosuvannya ta ekspluatatsiyi skladnykh informatsiynykh system, Vol. 16, pp. 124-135.
    https://doi.org/10.46972/2076-1546.2019.16.12
  7. Boychenko, A.S. and Zyubina, R.V. (2019), “Method of calculating the probability of implementing restricted access information threats from an internal violator”, Bezpeka informatsiynykh system ta tekhnolohiy, Vol. 1, № 1, pp. 19-26.
    https://doi.org/10.17721/ISTS.2019.1.19-26
  8. Komarov, M.Yu., Oniskova, A.V. and Gonchar, S.F. (2018), “Analysis of the study of the model of an information security violator for a secure Internet access node”, Vcheni zapysky TNU im. V.I. Vernadsʹkoho. Seriya: tekhnichni nauky, Vol. 29, № 68, pp. 138-
  9. Lisova, T.V. (2012), Models and methods of modern test theory, Vydavetsʹ PP Lysenko M.M., Nizhyn, Ukraine.
  10. Fedoruk, P.I. (2007), “Adaptive tests: statistical methods for analyzing the results of test knowledge control”, Matematychni mashyny i systemy 3, № 4, pp. 122-138.
  11. Rasch, G. (1980), Probabilistic Models for Some Intelligence and Attainment Tests, The University of Chicago Press, Chicago, US.
  12. Pogrebnyuk, I.M. and Tomashevsky, V.M. (2013), “Modeling of adaptive learning scenarios using Petri networks”, Visnyk NTUU «KPI» Informatyka, upravlinnya ta obchyslyuvalʹna tekhnika, 55, pp. 38-45.
  13. Ivokhin, E.V. and Makhno, M.F. (2015), “Development of adaptive testing and automatic assessment of knowledge”, Visnyk Kyyivsʹkoho natsionalʹnoho universytetu im. Tarasa Shevchenka. Seriya fizyko-matematychni nauky, 1, pp. 130-133.
  14. Paseka, M.S. (2015), “Processing data of adaptive training and testing of students of a higher educational institution”, Naukovyy visnyk NLTU Ukrayiny, Vol. 25, № 4, pp. 400-407.
  15. Fetisov, V.S. and Chernysheva, E.A. (2011), “Software tools for substantiating the quality of test tasks”, Naukovi zapysky NDU im. M. Hoholya. Psykholoho-pedahohichni nauky, Vol. 10, pp. 106-110.
  16. Sokolov, A.Yu. and Molchanova, A.G. (2011), “Methods of evaluating test results in automated training systems”, Radioelektronni i komp'yuterni systemy, 1, № 49, pp. 117-123.
  17. Rakov, S.A., Mazorchuk, N.S. and Bondarenko, E.A. (2013), “Algorithm for adjusting test scores based on the analysis of the complexity of tasks”, Informatsiyni tekhnolohiyi v osviti, Vol. 16, pp. 49-56.
    https://doi.org/10.14308/ite000426
  18. Shumeyko, A.O., Iskandarova-Malaya, A.O. and Limar, N.M. (2018), “On calculating the complexity of tasks”, Matematychne modelyuvannya, Vol. 2, № 39, pp. 58-65.
  19. Alekseev, O.M., Konovalova, N.A., Lozovaya, K.A. and Trofimenko, P.E. (2015), “The significance and complexity of test tasks in assessing the activities of university teachers”, Visnyk KNUTD, Seriya Tekhnichni nauky, 2, № 84, pp. 240–246.
  20. Melnik, A.M., Pasechnik, R.M. and Shevchuk, R.P. (2011), “Information technology for automatic generation of test tasks with controlled complexity”, Systemy obrobky informatsiyi, Vol. 3, № 93, pp. 57-61.

Full text: PDF

 

The Self-Checking Concurrent Error-Detection Systems Synthesis Based on the Boolean Complement to the Bose-Lin Codes with the Modulo Value M = 4

D.V. Efanov, Doctor of Science (Tech.)
Federal State Autonomous Educational Institution of Higher Education
“Russian University of Transport”
Russian Federation, 127994, Moscow, Obraztsova str., build. 9/9,
contact phone number (+7) (911) 709 21 64, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
V.V. Sapozhnikov, Doctor of Science (Tech.),
Vl.V. Sapozhnikov, Doctor of Science (Tech.),
Federal State Budgetary Educational Institution of Higher Education
“Emperor Alexander I St. Petersburg State Transport University”
Russian Federation, 190031, St. Petersburg, Moskovsky ave., 9,
contact phone number (+7) (812) 457 85 79, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2021, 43(1):28-45

ABSTRACT

The presented paper is devoted to the development of the Boolean complement method for the organization of the self-checking concurrent error-detection (CED) systems for digital devices. The article considers the features of using the modular sum codes (Bose-Lin codes) for these purposes, especially the Bose-Lin code by the modulo M = 4. This code has two check bits and only four different check vectors, this makes it easier to use it in the organization of the self-checking CED system. The article presents the block diagrams of the organization of the CED system by the method of Boolean complement to the considered modular sum code. The examples of the CED system synthesis by the Boolean complement method are given. The article defines the restrictions imposed on the CED systems synthesis procedure, and also forms an algorithm for synthesizing a self-checking CED systems by the method of the Boolean complement to the Bose-Lin code by the modulo M = 4.

KEYWORDS

self-checking discrete device; self-checking concurrent error-detection systems; duplication method; Boolean complement method; Bose-Lin code; testability.

REFERENCES

  1. Parkhomenko, P.P. and Sogomonyan, E.S. (1981), Osnovy tekhnicheskoj diagnostiki (optimizatsija algoritmov diagnostirovanija, apparaturnyje sredstva) [Basics of technical diagnostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow, USSR.
  2. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproverjaemyje ustrojstva i otkazoustojchivyje sistemy [Self-checking devices and failover systems], Radio i Svjaz`, Moscow, USSR.
  3. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Hristov, H.A. and Gavzov, D.V. (1995), Metody postroeniya bezopasnyh mikroehlektronnyh sistem zheleznodorozhnoj avtomatiki [Methods for constructing safety microelectronic systems for railway automation], Transport, Moscow, Russia.
  4. Goessel, M. and Graf, S. (1994), Error Detection Circuits, McGraw-Hill, London, UK.
  5. Nicolaidis, M. and Zorian, Y. (1998), “On-Line Testing for VLSI – А Compendium of Approaches”, Journal of Electronic Testing: Theory and Applications, Vol. 12, pp. 7-20.
    https://doi.org/10.1023/A:1008244815697
  6. Goessel, M., Morozov, A.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2005), “Che­cking Combinational Circuits by the Method of Logic Complement”, Avtomatika i telemekhanika, Vol. 8, pp. 161—172.
    https://doi.org/10.1007/s10513-005-0174-2
  7. Mikoni, S.V. (1992), Obshchie diagnosticheskie bazy znanij vychislitel'nyh sistem [General Diagnostic Knowledge Base of Computing Systems], SPIIRAN, St. Petersburg, Russia.
  8. Mitra, S. and McCluskey, E.J. (2000), “Which Concurrent Error Detection Scheme to Choose?”, Proceedings of International Test Conference, USA, Atlantic City, NJ, October 03-05, 2000, pp. 985-994.
    https://doi.org/10.1109/TEST.2000.894311
  9. Das, D., Touba, N.A., Seuring, M. and Gossel, M. (2000), “Low Cost Concurrent Error Detection Based on Modulo Weight-Based Codes”, Proceedings of IEEE 6th International On-Line Testing Workshop (IOLTW), Spain, Palma de Mallorca, July 3-5, 2000, pp. 171-176.
  10. Piestrak, S.J. (1995), Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Oficyna Wydawnicza Politechniki Wrocłavskiej, Warsaw, Poland.
  11. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2017), “Generalized Algorithm of Building Summation Codes for the Tasks of Technical Diagnostics of Discrete Systems”, Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29 – October 2, 2017, pp. 365-371.
    https://doi.org/10.1109/EWDTS.2017.8110126
  12. Busaba, F.Y. and Lala, P.K. (1994), “Self-Checking Combinational Circuit Design for Single and Unidirectional Multibit Errors”, Journal of Electronic Testing: Theory and Applications, Vol. 1, pp. 19-28.
    https://doi.org/10.1007/BF00971960
  13. Morosow, A., Saposhnikov, V.V., Saposhnikov, Vl.V. and Goessel, M. (1998), “Self-Checking Combinational Circuits with Unidirectionally Independent Outputs”, VLSI Design, Vol. 5, № 4, pp. 333-345.
    https://doi.org/10.1155/1998/20389
  14. Goessel, M., Morozov, A.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2003), “Logic Complement, a New Method of Checking the Combinational Circuits”, Avtomatika i telemekhanika, Vol. 1, pp. 167-176.
  15. Saposhnikov, Vl.V., Dmitriev, A., Goessel, M. and Saposhnikov, V.V. (1996), “Self-Dual Parity Checking – a New Method for on Line Testing”, Proceedings of 14th IEEE VLSI Test Symposium, USA, Princeton, 1996, pp. 162-168.
    https://doi.org/10.1109/VTEST.1996.510852
  16. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New Methods of Concurrent Checking: Edition 1, Springer Science+Business Media B.V., Dordrecht, Netherlands.
  17. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl., Osadchy, G. and Pivovarov, D. (2019), “Self-Dual Complement Method up to Constant-Weight Codes for Arrangement of Combinational Logical Circuits Concurrent Error-Detection Systems”, Proceedings of 17th IEEE East-West Design & Test Symposium (EWDTS`2019), Batumi, Georgia, September 13-16, 2019, pp. 136-143.
    https://doi.org/10.1109/EWDTS.2019.8884398
  18. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Pivovarov, D.V. (2017), “Boolean Complement Method Based on Constant-Weight Code «1-out-of-4» for Formation of Totally Self-Checking Concurrent Error Detection Systems”, Elektronnoe modelirovanie, Vol. 39, № 2, pp. 15—34.
    https://doi.org/10.15407/emodel.39.02.015
  19. Efanov, D.V., Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Pivovarov, D.V. (2020), “The Synthesis Conditions of Completely Self-Testing Embedded-Control Circuits Based on the Boolean Complement Method to the «1-out-of-m» Constant-Weight Code”, Automatic Control and Computer Sciences, Vol. 54, № 2, pp. 89-99.
    https://doi.org/10.3103/S0146411620020042
  20. Sen, S.K. (2010), “A Self-Checking Circuit for Concurrent Checking by 1-out-of-4 code with Design Optimization using Constraint Don’t Cares”, National Conference on Emerging trends and advances in Electrical Engineering and Renewable Energy (NCEEERE 2010), Sikkim Manipal Institute of Technology, Sikkim, India, December 22-24, 2010.
  21. Das, D.K., Roy, S.S., Dmitiriev, A., Morozov, A. and Gössel, M. (2012), “Constraint Don’t Cares for Optimizing Designs for Concurrent Checking by 1-out-of-3 Codes”, Proceedings of the 10th International Workshops on Boolean Problems, Freiberg, Germany, September, 2012, pp. 33-40.
  22. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Goessel, M. (2001), Samodvojstvennye diskretnye ustrojstva [Self-Dual Discrete Devices], Energoatomizdat, St. Petersburg, Russia.
  23. Lala, P.K. (2001), Self-Checking and Fault-Tolerant Digital Design, Morgan Kaufmann Publishers, San Francisco, USA.
  24. Morozov, M., Saposhnikov, V.V., Saposhnikov, Vl.V. and Goessel, M. (2000), “New Self-Checking Circuits by Use of Berger-codes”, Proceedings of 6th IEEE International On-Line Testing Workshop, Palma De Mallorca, Spain, July 3-5, 2000, 171-176.
    https://doi.org/10.1109/OLT.2000.856626
  25. Berger, J.M. (1961), “A Note on Error Detection Codes for Asymmetric Channels”, Information and Control, Vol. 4, № 1, pp. 68-73.
    https://doi.org/10.1016/S0019-9958(61)80037-5
  26. Bose, B. and Lin, D.J. (1985), “Systematic Unidirectional Error-Detection Codes”, IEEE Transaction on Computers, Vol. C-34, pp. 1026-1032.
    https://doi.org/10.1109/TC.1985.1676535
  27. Das, D. and Touba, N.A. (1999), “Synthesis of Circuits with Low-Cost Concurrent Error Detection Based on Bose-Lin Codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, № 1-2, pp. 145-155.
    https://doi.org/10.1023/A:1008344603814
  28. Jha, N.K. (1991), “Totally Self-Checking Checker Designs for Bose-Lin, Bose and Blaum Codes”, IEEE Transaction on Computer-Aided Design, Vol. 10, № 1, pp. 136-143.
    https://doi.org/10.1109/43.62799
  29. Nikolos, D. and Kavousianos, X. (1999), “Modular TSC Checkers for Bose-Lin and Bose Codes”, Proceedings of the 17th IEEE VLSI Test Symposium, Dana Point, USA, April 25-29, 1999, pp. 354-360.
  30. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2020), Kody s summirovaniem dlya sistem tekhnicheskogo diagnostirovaniya. Tom 1: Klassicheskie kody Bergera i ih modifikacii [Sum Codes for Technical Diagnostics Systems. Volume 1: Classical Berger Codes and Their Modifications], Nauka, Moscow, Russia.
  31. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2017), “Conditions for Detecting a Logical Element Fault in a Combination Device under Concurrent Checking Based on Berger`s Code”, Avtomatika i telemekhanika, Vol. 5, pp. 152-165.
    https://doi.org/10.1134/S0005117917050113
  32. Efanov, D.V., Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Pivovarov, D.V. (2018), “The «2-out-of-4» constant-weight code application in the self-checking check circuits orga­nization based on the Boolean complement method”, Informatika, Vol. 15, № 4, pp. 71- 85.
  33. Nikolos, D. (1998), “Self-Testing Embedded Two-Rail Checkers”, Journal of Electronic Tes­ting: Theory and Applications, Vol. 12, № 1-2, pp. 69-79.
    https://doi.org/10.1007/978-1-4757-6069-9_7

Full text: PDF

 

REVIEW OF TECHNOLOGIES FOR CONTROLLING THE MODES OF OPERATION OF 6...20 KV ELECTRICAL NETWORKS WITH DISTRIBUTED ENERGY SOURCES

A.F. Zharkin, V.O. Novskiy, V.A. Popov, O.S. Yarmoliuk, Hawkar Ahmed Noory

Èlektron. model. 2021, 43(1):46-66

ABSTRACT

An overview of the statements and methods for implementing the problem of distribution networks reconfiguration, as one of the most effective organizational measures to reduce electrical energy losses, is presented. Various formulations of this problem and optimization methods used for its solution are analyzed considering its as a medium-term planning problem, when the optimal disconnection points were determined for the most characteristic seasons of the year. It is shown that in modern power supply systems under the conditions of widespread implementation of distributed generation energy sources and storage units, the use of electric vehicles, the solution of this problem within the framework of the traditional approach loses its effectiveness. It is shown that in this case it is necessary to use the dynamic reconfiguration of distribution networks. Here one of the possible ways is associated with the use of remotely controlled switching devices. An algorithm that allows one to choose the optimal locations and operating mode of switches with remote control, for electrical energy losses minimization, taking into account the switching resource, is proposed. It has been demonstrated that this technical solution is justified in the case of cyclic and sufficiently long-term changes in loads, output power of distributed energy sources, when turning on/off storage devices. It is shown that a more universal solution is the use of power electronics, which makes it possible to form the so-called “soft” open points of the distribution network circuits. Under these conditions, it becomes possible to realize the real time control of the active and reactive power flows, ensuring the minimization of electrical energy losses.

KEYWORDS

electrical distribution networks, mode of operation control, distributed generation, remotely controlled switching devices, soft open points.

REFERENCES

  1. Malii, N.O. (1973), “Methods for optimizing the operational modes of urban electrical networks”, Abstract of Cand. Sci. (Tech.) dissertation, Kyiv Polytechnic Institute, Kyiv, USSR.
  2. Popov, V.A. (1982), “Selection of schemes of redundant distribution networks with a minimum of electricity losses”, Enerhetyka ta elektryfikatsiia, Vol. 4, pp. 25–28.
  3. Fokin, Y.A. and Hoziainov, M.A. (1990), “A method for finding a suitable topology when planning the modes of distribution networks”, Sbornik nauchnykh trudov Moskovskogo energeticheskogo instituta: optimizatsiya sistemy elektroenergeticheskikh sistem, Vol. 230, pp. 175–180.
  4. Billinton, R. and Jonavithula, S. (1996), “Optimal switching devise placement in radial distribution systems”, IEEE Transactions on Power Delivery, Vol. 11, no. 3, pp. 1646–1651.
    https://doi.org/10.1109/61.517529
  5. Gelli, G. and Pilo, F. (1996), “Optimal sectionalizing switches allocation in distribution networks”, IEEE Transactions on Power Delivery, Vol. 14, no. 3, pp. 1167–1172.
    https://doi.org/10.1109/61.772388
  6. Ekel, P.Y., Popov, V.A. and Kliushnik, A.I. (1986), “Taking into account the response of the supply network in the problems of optimization of distribution network modes”, Elektrychni merezhi i systemy, Vol. 22, pp. 65–72.
  7. Shydlovskyi, A.K. and Tugai, Y.I. (1981), Koordynovana optymizatsiia rezhymiv zhyvylnoi i rozpodilnoi elektrychnykh merezh [Coordinated optimization of power supply and distribution networks], Instityt electrodynamiky, Kyiv, USSR.
  8. Boardman, J.T. and Meckiff, С.С. (1985), “A Branch and Bound Formulation to Electricity Distribution Planning Program”, IEEE Transactions on Power Apparatus and Systems, Vol. 104, pp. 2112–2118.
    https://doi.org/10.1109/TPAS.1985.318789
  9. Jabr, R.A., Singh, R. and Pal, B.C. (2012), “Minimum loss network reconfiguration using mixed-integer convex programming”, IEEE Transactions on Power Systems, Vol. 27, pp. 1106–1115.
    https://doi.org/10.1109/TPWRS.2011.2180406
  10. Glamokanin, V. (1990), “Optimal loss reduction of distribution networks”, IEEE Transactions on Power Systems, Vol. 5, no. 3, pp. 774–782.
    https://doi.org/10.1109/59.65905
  11. Sharatkhah, M.M., Haghifam, M.R. and Arefi, A. (2011), “Load profile based determination of distribution feeder configuration by dynamic programming”, IEEE Trondheim PowerTech Conference, Vol. 12, pp. 1–6.
    https://doi.org/10.1109/PTC.2011.6019329
  12. Broadwater, R.P. (2003), “Time varying load analysis to reduce distribution losses through reconfiguration”, IEEE Transaction on Power Delivery, Vol. 8, no. 1, pp. 294–300.
    https://doi.org/10.1109/61.180349
  13. Zhu, J.Z. (2002), “Optimal Reconfiguration of electrical distribution network using the refined genetic algorithm”, Electric Power Systems Research, Vol. 62, no. 1, pp. 37–42.
    https://doi.org/10.1016/S0378-7796(02)00041-X
  14. Su, C.-T., Chang, C.-F. and Chiou, J.-P. (2005), “Distribution network reconfiguration for loss reduction by ant colony search algorithm”, Electric Power Systems Research, Vol. 75, no. 2–3, pp. 190–199.
    https://doi.org/10.1016/j.epsr.2005.03.002
  15. Olamaei, J., Niknam, T. and Arefi, S.B. (2011), “Distribution feeder reconfiguration for loss minimization based on modified honey bee mating optimization algorithm”, the 2nd International Conference on Advances in Energy Engineering, Vol. 5, pp. 304–311.
    https://doi.org/10.1016/j.egypro.2011.12.934
  16. Young, J.J., Chul, K.J., Kim, Jin-O., Joong-Rin Shin, J.O. and Lee, K.Y. (2002), “An efficient simulated annealing algorithm for network reconfiguration in large-scale distribution systems”, IEEE Transactions on Power Delivery, Vol. 17, no. 4, pp. 1070–1078.
    https://doi.org/10.1109/TPWRD.2002.803823
  17. Abdelaziz, A.Y., Mohamed, F.M., Mekhamer, S.F. and Badr, M.A.L. (2010), “Distribution system reconfiguration using a modified Tabu Search algorithm”, Electric Power Systems Research, Vol. 80, no. 8, pp. 943–953.
    https://doi.org/10.1016/j.epsr.2010.01.001
  18. Abdelaziz, A.Y., Mohammed, F.M., Mekhamer, S.F. and Badr, M.A.L. (2009), “Distribution Systems Reconfiguration using a modified particle swarm optimization algorithm”, Electric Power Systems Research, Vol. 79, pp. 1521–1530.
    https://doi.org/10.1016/j.epsr.2009.05.004
  19. Kim, H., Ko, Y. and Jung, K.H. (1993), “Artificial Neural-Network Based Feeder Reconfiguration for Loss Reduction in Distribution Systems”, Proc. IEEE Transactions on Po­wer Delivery, Vol. 8, pp. 1356–1366.
    https://doi.org/10.1109/61.252662
  20. Bernardon, D.P., Sperandio, M., Garcia, V.J., Canha, L.N., Abaide, A.D.R. and Daza, E.F.B. (2011), “AHP decision-making algorithm to allocate remotely controlled switches in distribution networks”, IEEE Transactions on Power Delivery, Vol. 26, no. 3, pp. 1884–1892.
    https://doi.org/10.1109/TPWRD.2011.2119498
  21. Ahuja, A., Das, S. and Pahwa, A. (2007), “An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration”, IEEE Transactions on Power Systems, Vol. 22, pp. 1101–1111.
    https://doi.org/10.1109/TPWRS.2007.901286
  22. Tulle, D.P. and Baldick, R. (2012), “The evaluation of plug-in electric vehicle-grid interactions”, IEEE Transactions on Smart Grid, Vol. 3, no. 1, pp. 500–505.
    https://doi.org/10.1109/TSG.2011.2168430
  23. Shidlovskiі, А.К., Zharkin, A.F., Pavlov, V.B. and Novskiy, V.A. (2018), “Influence of development of charging infrastructure for electric vehicles and hybrid transport on modes of electric networks”, Tekhnichna Elektrodynamika, Vol. 3. Pp. 74–81.
    https://doi.org/10.15407/techned2018.03.074
  24. Pavlov, V.B., Novskiy, V.A. Popov, V.A. and Palachov, S.O. (2018), “Features of use of electrical vehicle charger station in urban electrical networks”, Tekhnichna Elektrodynamika, Vol. 6. Pp. 77–80.
    https://doi.org/10.15407/techned2018.06.077
  25. Wu, Y., Lee, C., Liu, L. and Tsai, S. (2010), “Study of Reconfiguration for the Distribution System with Distributed Generators”, IEEE Transactions on Power Delivery, Vol. 25, no. 3, pp. 1678–1685.
    https://doi.org/10.1109/TPWRD.2010.2046339
  26. Office of Gas and Electricity Markets, Losses incentive mechanism, available at: https://www.ofgem.gov.uk/electricity/distribution-networks/losses-incentive-mechanism (accessed August 25, 2020).
  27. Xu, Y., Liu, C.C., Schneider, K.P. and Ton, D.T. (2016), “Placement of remote-controlled switches to enhance distribution systems restoration capability”, IEEE Transactions on Power Systems, Vol. 31, pp. 1139–1150.
    https://doi.org/10.1109/TPWRS.2015.2419616
  28. Spitsa, V., Ran, X., Salcedo, R., Martinez, J.F., Uosef, R.E., de Leon, F., Czarkowski, D. and Zabar, Z. (2012), “On the Transient Behavior of Large-Scale Distribution Networks During Automatic Feeder Reconfiguration”, IEEE Transactions on Smart Grid, Vol. 3, no. 2, pp. 887–896.
    https://doi.org/10.1109/TSG.2012.2186319
  29. Zharkin, А.F., Denysiuk, S.P. and Popov, V.A. (2017), Systemy elektropostachannia z dzherelamy rozpodilenoi heneratsii [Power supply systems with distributed generation sources], Naukova dumka, Kyiv, Ukraine.
  30. Garcia, E.D., Pereira, P.R., Canha, L.N. and Popov, V.A. (2018), “Grid functional blocks methodology to dynamic operation and decision making in Smart Grid”, Electrical Power and Energy Systems, Vol. 103, pp. 267–276.
    https://doi.org/10.1016/j.ijepes.2018.06.002
  31. Bloemink, J.M. and Green, T.C. (2013),” Benefits of distribution-level power electronics for supporting distributed generation growth”, IEEE Transactions on Power Delivery, Vol. 28, pp. 911–917.
    https://doi.org/10.1109/TPWRD.2012.2232313
  32. Cao, W., Wu, J., Jenkins, N., Wang, Ch. and Green, T. (2016), “Benefits analysis of soft open points for electrical distribution network operation”, Applied Energy, Vol. 165, pp. 36–47.
    https://doi.org/10.1016/j.apenergy.2015.12.022
  33. Flourentzou, N., Adelidis, V.G. and Demetriades, C.D. (2009), “VSC – based HVDC power transmission systems: an overview”, IEEE Transactions on Power Electronics, Vol. 24, pp. 592–602.
    https://doi.org/10.1109/TPEL.2008.2008441
  34. Daelemans, G., Srivastava, K., Reza, M., Cole, S. and Belmans, R. (2009), “Minimization of steady state losses in meshed networks using VSC HVDC”, IEEE Power and Energy Society General Meeting, pp. 1–5.
    https://doi.org/10.1109/PES.2009.5275450
  35. Powell, M.J.D. (1964), “An efficient method for finding the minimum of a function of several variables without calculating derivatives”, Comput, Vol. 7, pp. 155–162.
    https://doi.org/10.1093/comjnl/7.2.155

Full text: PDF