Electronic modeling

Vol 42, No 6 (2020)

https://doi.org/10.15407/emodel.42.06

CONTENTS

Computational Processes and systems

  MOKHOR V.V., EVDOKIMOV V.A.
About Creating A Multi-Agent Simulations Model of Pro­cesses Pricing in the Electricity Market


3-17
  SAUKH S.Ye., DZHYHUN E.N.
Retrospective Models of Wind Power Plants and Solar Power Plants in the Problems of Planning the Models of Electric Power Systems


18-33
  CHERNOZOMOV Y.S.
Energy Distribution Models at the Interface in Dense Energy Fields of the Solar Concentrator System

34-55

Application of Modeling Methods and Facilities

  DOLINENKO V.V., SHAPOVALOV E.V., KOLYADA V.A., SKUBA T.G.
Creation of an Adap­tive Robotic Arc Surfacing System, Designed to Restore Complex Spatial Forms Metal Parts


56-71
  KOBZAR S.H., TOPAL O.I., HAPONYCH L.S., HOLENKO I.L.
Investigation of Co-firing for Fuel Derived from Municipal Solid Waste in a Model Combustion Chamber


72-90
  SHEVCHENKO S.S.
Models of Packing Seals Functioning Processes for Improving Sealing Mechanisms


91-107
  ZUBOK V.Yu.
Construction and Visualization of a New Risk-oriented Model of Global Routing in the Internet

108-115

ABOUT CREATING A MULTI-AGENT SIMULATIONS MODEL OF PROCESSES PRICING IN THE ELECTRICITY MARKET

V.V. Mokhor, V.A. Evdokimov

Èlektron. model. 2020, 42(6):03-17
https://doi.org/10.15407/emodel.42.06.003

ABSTRACT

A review and analysis of publications devoted to solving scientific and practical problems of the development of the electric energy (e/e) market as a complex organizational and technical system (SOTS) is given. The subsystem of pricing management is highlighted, as its component part, as a separate object of organizational management. The urgency and necessity of creating a simulation model of the system for managing the pricing process in the electricity market with the direct participation of market entities is substantiated, the main purpose of which is to study the scientific and practical problem of improving the methodological pricing tools. Based on the analysis of modern methods of simulation modeling of management processes in the SOTS, the choice of a multi-agent approach as the main one for building a simulation model of pricing processes in the electricity market is justified.

KEYWORDS

simulation model, multi-agent approach, organizational and technical system, electricity market.

REFERENCES

  1. Ilyichev, L.F., Fedoseev, P.N., Panov, V.G. (1983), Filosofskiy entsiklopedicheskiy slovar [Philosophical Encyclopedic Dictionary], Sovetskaya entsiklopediya, Moscow, USSR.
  2. Pogorelov, V.I. (2010), Sistema i yeye zhiznennyy tsikl: vvedeniye v CALS-tekhnologii: Uchebnoye posobiye [System and its life cycle: an introduction to CALS technologies: Tutorial], BGTU, Saint Petersburg, Russia.
  3. Chernyshov, V.N., Chernyshov, A. (2008), Teoriya sistem i sistemnyy analiz: Ucheb­noye posobiye [Systems theory and systems analysis: Tutorial], TGTU, Tambov, Russia.
  4. Sovetov, B. Ya., Yakovlev, S.A. (2001), Modelirovaniye system. Uchebnik dlya vuzov. Tret'ye izd., pererab. i dop. [Modeling systems: Tutorial for universities, 3rd ed., revised and enlarged], Vysshaya shkola, Moscow, Russia.
  5. Volkova, V.N., Emelyanov, A.A. (2006), Teoriya sistem i sistemnyy analiz v upravlenii organizatsiyami: Uchebnoye posobiye [Systems theory and systems analysis in the management of organizations: Tutorial], Finansy i statistika, Moscow, Russia.
  6. Buslenko, N.P. (1978), Modelirovaniye slozhnykh sistem [Modeling of complex systems], Nauka, Moscow, USSR.
  7. Tomashevsky, V.M. (2005), Modelyuvannya system [Models of systems], Vydavnycha grupa VNU, Kyiv, Ukraine.
  8. Gane, V.A., Gerasimova, E.M., Gerasimov, E.L. (2015), Modeli sistem organizatsionnogo upravleniya [Models of systems of organizational management], Pravo i ekonomika, Minsk, Belarussia.
  9. Soloviev, I.V. (2013), “Problems in the study of complex organizational-technical system” / I.V. Soloviev // Vestnik MGTU MIREA, Vol. 1, no. 1, pp. 20-40.
  10. Kornakov, A.N. (2015), “Model complex organizational-technical system”, Mezhdunarodnyy elektronnyy nauchnyy zhurnal. Perspektivy nauki i obrazovaniya, Vol. 2., no. 14, pp. 44- 50, available at: https://pnojournal.files.wordpress.com/2015/01/pdf_150206.pdf (acces­sed: December 14, 2019).
  11. Gitelman, L.D., Ratnikov, B.E., Kozhevnikov, M.V. (2013), “Electricity demand-side mana­gement: adaptation of foreign experience”, Ekonomika regiona, Vol. 1, no. 76, pp. 84- 89.
    https://doi.org/10.17747/2078-8886-2013-1-84-89
  12. Nekhorishikh, I.N., Dobrinova, T.V., Anisimov, A.Yu., Zheglovskaya, A.V. (2019), “World practice of managing electricity demand”, Ekonomika v promyshlennosti, Vol. 12, no. 3, pp. 280-287.
    https://doi.org/10.17073/2072-1633-2019-3-280-287
  13. Nakhodov, V., Zamulko, A. (2020), “Improvement of the new model of the electricity market by managing power consumption modes (scientific opinion)”, available at: http:// reform.energy/news/usovershenstvovanie-novoy-modeli-rynka-elektroenergii-putem-upravleniya-rezhimami-elektropotrebleniya-nauchnoe-mnenie-13412 (accessed January 15, 2020).
  14. Prakhovnik, A.V., Popov, V.A., Yarmolyuk, E.S., Kokorina, M.T. (2012), “Perspectives and trends of distributed generation development in Ukraine”, Enerhetyka: ekonomika, tekhnolohiyi, ekolohiya, Vol. 2, no. 31, pp. 7-14.
  15. Voropay, N.I. (2005), “Prospects and ways of development of distributed generation in electric power systems”, International Scientific and Practical Conference "Small Power Engineering - 2005, Moscow, Russia, available at: http: // www. combienergy.ru/stat/983 (accessed October 19, 2019).
  16. Evdokimov, V.A. (2019), “Some questions of research of technical and organizational-economic influence of distributed generation on functioning of power system and market of electric energy”, Modelyuvannya ta informatsiyni tekhnolohiyi. Zbirnyk naukovykh prats, Vol. 88. pp. 134-143.
  17. Woo, C.K., King, M., Tishler, A., Chow, L.C.H. (2006), “Cost of electricity deregulation”, Energy, Vol. 31. pp. 747–768.
    https://doi.org/10.1016/j.energy.2005.03.002
  18. Stoft, S. (2006), Ekonomika energosistem. Vvedeniye v proyektirovaniye rynkov elektroenergii [Power System EconomicsDesigning MarketsFor Electricity], Translated from English, Mir, Moscow, Russia.
  19. Belyaev, L.S. (2009), Problemy elektroenergeticheskogo rynka [Problems of the electric power market], Nauka, Novosibirsk, Russia.
  20. Eisenberg, N.I., Filatov, A.Yu. Modelirovaniye i analiz mekhanizmov funktsionirovaniya elektroenergeticheskikh rynkov [Modeling and analysis of mechanisms of functioning of electric power markets], Izd-vo Irkut. gos. un-ta, Irkutsk, Rusiia.
  21. Saukh, S.E. (2018), Metodologiya i metody matematicheskogo modelirovaniya yenergetiki v rynochnykh usloviyakh [Methodology and methods of mathematical modeling of energy engineering in market conditions], Elektronnoye modelirovaniye, Vol. 40, no. 3, pp. 3-32.
    https://doi.org/10.15407/emodel.40.03.003
  22. Kuznetsov, A.V. (2018), “A brief overview of multi-agent models”, Upravleniye bol'shimi sistemami, Vol. 71, pp. 6-44.
  23. Tarasov, V.B. (1998), “Agents, multi-agent systems, virtual communities: a strategic direction in computer science and artificial intelligence”, available at: https // www. science.donntu.edu.ua/rus/kirgaev/libtatu (accessed July 28, 2019).
  24. Dodonov, A.G., Lande, D.V. (2011), Zhivuchest informatsionnykh sistem [Vitality of information systems], Naukova Dumka, Kyiv, Ukraine.
  25. Yalovets, A.L. (2019), Multyahentne modelyuvannya peresliduvannya na ploshchyni: vid teoriyi do prohramnoyi realizatsiyi [Multi-agent modeling of re-distribution on the area: from theory to software implementation], Naukova dumka, Kyiv, Ukraine.
  26. North, M.J., Macal C.M. (2007), Managing Business ComplexityDiscovering Strategic Solutions with Agent-Based Modeling and Simulation, Oxford University Press.
  27. Kirilenko, O.V., Denisyuk, S.P., Tankevich, S.Ye., Bazyuk, T.M. et al. (2016), “Information and normative safety of organizing a multi-agent system for an electric power system and an  active  supporter”, Informatsiyni tekhnolohiyi ta kompyuterna inzheneriya, Vol. 1, pp. 29-34.
  28. Bazyuk, T.M., Blinov, I.V., Butkevych, O.F., (2016), Intelektualni elektrychni merezhi: elementy ta rezhymy [Intelligent electrical framing: elements and modes], Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.
  29. Massel, L.V., Galperov, V.I. (2015), “Development of multi-agent systems for distributed solution of energy problems using agent-based scenarios”, Izvestiya Tomskogo politekh­nicheskogo universiteta, Vol. 326, no. 5, pp. 45-53.

Full text: PDF

 

RETROSPECTIVE MODELS OF WIND POWER PLANTS AND SOLAR POWER PLANTS IN THE PROBLEMS OF PLANNING THE MODELS OF ELECTRIC POWER SYSTEMS

S.Ye. Saukh, E.N. Dzhyhun

Èlektron. model. 2020, 42(6):18-33
https://doi.org/10.15407/emodel.42.06.018

ABSTRACT

A retrospective approach to building a model of electricity generation of Wind Power Plants (WPP) and Solar Power Plants (SPP) was applied. In this approach, data on electricity generation by WPP and SPP of previous periods are considered as a reflection of complex processes of conversion of variable wind energy and solar radiation by available generating equipment for electrici­ty.The model is presented in such a mathematical form, which in the forecast period allows to take into account the impact of future climate change and the dynamics of the introduction of new capacities of WPP and SPP on the functioning of the electric power system. This model is easy to apply and ensures the adequacy of modeling the development of electric power systems with dif­ferent shares of electricity production from Renewable Energy Sources. The results of application of the proposed retrospective model of electricity generation by WPP and SPP for modeling the deve­lopment of the electric power systemin accordance with the scenario of the Energy Strategy of Ukraine for the period up to 2035 are presented.

KEYWORDS

renewable energy, retrospective model, forecast.

REFERENCES

  1. URL: http://enref.org/wp-content/uploads/2014/07/Dyrektyva-2009.28.ES_.pdf
  2. URL: https://www.energy-community.org/legal/decisions.html
  3. URL: https://zakon.rada.gov.ua/laws/show/902-2014-%D1%80#Text
  4. “Energy strategy of Ukraine for the period up to 2035” (2019), available at: https://menr. ua/news/34422.html .
  5. Ringkjøb, H.-K., Haugan, P.M., Solbrekke, I.M. (2018), “A review of modelling tools for energy and electricity systems with large shares of variable renewable”, Renewable and Sustainable Energy Reviews, Vol. 96, pp. 440–459.
    https://doi.org/10.1016/j.rser.2018.08.002
  6. Van Hulle, F., Pineda, I., Wilczek, P. (2014), Economic grid support services by wind and solar PV: a review of system needs, technology options, economic benefits and sui­table market mechanisms, available at: https://windeurope.org/fileadmin/files/library/publications/ reports/REserviceS.pdf
  7. Gevorgian, V., Neill, B.O. (2016), Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants, available at: https://www.nrel.gov/docs/fy16osti/ 65368.pdf
    https://doi.org/10.2172/1236761
  8. Australian Energy Market Operator (2013), Wind turbine plant capabilities report, available at: https://www.aemo.com.au/-/media/Files/PDF/Wind_Turbine_Plant_Capabilities_ pdf/.
  9. Bousseau, B., Belhomme, R., Monnot, E. et al. (2006), Contribution of wind farms to ancillary services, CIGRE, available at: https://www.researchgate.net/profile/Bacha_Seddik/ publication/229005248_Contribution_of_Wind_Farms_to_Ancillary_Services/links/54aab5 be0cf25c4c472f489c/Contribution-of-Wind-Farms-to-Ancillary-Services.pdf.
  10. Huber, M., Dimkova, D., Hamacher, T. (2014), Integration of wind and solar power in Europe: assessment of flexibility requirements, Energy, Vol. 69, pp. 236–246., available at: https://www.sciencedirect.com/science/article/pii/S0360544214002680?via%3Dihub.
    https://doi.org/10.1016/j.energy.2014.02.109
  11. Pietzcker, R.C., Stetter, D., Manger, S., Luderer, G. (2014), “Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power”, Applied Energy, Vol. 135, pp. 704-720.
    https://doi.org/10.1016/j.apenergy.2014.08.011
  12. Schaber, K. (2013), Integration of variable renewable energies in the European power system: a model-based analysis of transmission grid extensions and energy sector coupling, Technische Universität München, available at: https://mediatum.ub.tum.de/doc/1163646/document.pdf.
  13. Jebaraj, S., Iniyan, S. (2006). “A review of energy models”, Renewable and Sustainable Energy Reviews, Vol. 10, no. 4, pp. 281-311.
    https://doi.org/10.1016/j.rser.2004.09.004
  14. Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M. (2010), “A review of computer tools for analy­zing the integration of renewable energy into various energy systems”, AppliedEnergy, Vol. 87, no. 4, pp. 1059-1082.
    https://doi.org/10.1016/j.apenergy.2009.09.026
  15. Dyachuk, O., Chepelev, M., Podolets, R., Trypolska, G. et al. (2017), Perekhid Ukrayiny na vidnovlyuvanu enerhetyku. Zvit za rezultatamy modelyuvannya bazovoho ta alternatyvnykh stsenariyiv rozvytku enerhetychnoho sektoru do 2050 roku [Ukraine's transition to renewable energy. Report on the results of modeling the baseline and alternative scenarios for the development of the energy sector until 2050], Predstavnytstvo Fondu im. Bʹol­lya v Ukrayini, ART KNIGA, Kyiv, Ukraine.
  16. ULR: http://www.nerc.gov.ua/?id=16021
  17. ULR: https://energy/peredacha-i-dyspetcheryzatsiya/dyspetcherska-informatsiya/dobovyj- grafik-vyrobnytstva-spozhyvannya-e-e/.
  18. Saukh, S.Ye. (2019), “The balance of power differentials in the electric power system and its application for the analysis of modern development trends of the UES of Ukraine”, Elektronne modelyuvannya, Vol. 41, no. 6, pp. 3–14.
    https://doi.org/10.15407/emodel.41.06.003
  19. World energy outlook (2019), International Energy Agency, available at: https://www.org/reports/world-energy-outlook-2019/renewables#abstract.
  20. New Energy Outlook (2019), Bloomberg New Energy Finance, available at: https:// bnef.com/ new-energy-outlook/#toc-download.
  21. Wynn, G. (2018). Power-Industry Transition, Here and Now: Wind and Solar Won’t Break the Grid: Nine Case Studies, Institute for Energy Economics and Financial Analysis (IEEFA), USA.
  22. Germany 2020 – Energy Policy Review, (2020), International Energy Agency.
  23. “Global energy storage market takes off”, (2019), Wood Mackenzie, available at: https://www.woodmac.com/ news/editorial/global-energy-storage-market-takes-off/.

Full text: PDF

 

ENERGY DISTRIBUTION MODELS AT THE INTERFACE IN DENSE ENERGY FIELDS OF THE SOLAR CONCENTRATOR SYSTEM

Y.S. Chernozomov

Èlektron. model. 2020, 42(6):34-55
https://doi.org/10.15407/emodel.42.06.034

ABSTRACT

Possibilities of providing admissible thermal modes of the elements working in dense energy fields of the offered solar concentrator are analyzed. The principle and features of its functioning are described. Methods of providing admissible thermal modes of operation of its optical elements taking into account electrodynamic features of solar radiation are offered. Models of energy distribution at the interface of media and methods of creating the effect of complete reflection on elements operating in dense energy fields are considered.

KEYWORDS

index of refraction, invariants of Кеttеlеrа, anisotropy, ferrits, mеtаmaterials, screening measure.

REFERENCES

  1. Akhadov, Zh.Z. (2016), “Combined power plant with solar concentrators”, LAP LAMBERT Academic Publising.
  2. Kozelkin, V.V., Usoltsev, I.F. (1967), “Fundamentals of infrared technology”, Mashinostroyeniye, Moscow, USSR.
  3. Libenson, M.N., Yakovlev, E.B., Shandybina, G.D. (2008), Vzaimodeystviye lazer­nogo izlucheniya s veshchestvom (silovaya optika). Chast I. Pogloshcheniye lazernogo izlucheniya v veshchestve [Interaction of laser radiation with matter (power optics). Part I. Absorption of laser radiation in matter], ITMO University, St. Petersburg, Russia.
  4. Veiko, V.P., Libenson, M.N., Chervyakov, G.G., Yakovlev, E.B. (2008), Vzaimodeist­viye lazernogo izlucheniya s veshchestvom. Silovaya optika [Interaction of laser radiation with matter. Power optics], FIZMATLIT, Moscow, Russia.
  5. Chernozomov, E.S. (2018), Patent № 120802, IPC (2020.01) F24S 10/00, G02B 6/00, F24S 20/20 (2018.01), F24S 23/00 “Device for concentration and transmission of solar radiation”, 06907; application date June 20, 2018, publication date February 10, 2020; Bulletin № 3.
  6. Sokolov, A.V. (1961), Opticheskiye svoystva metallov [Optical properties of metals], FIZMATLIT, Moscow, USSR.
  7. Sarzhevsky, A.M. (2004), Polnyy kurs [Optics. Complete course], Editorial URSS, Moscow, Russia.
  8. Born, M., Wolf, E. (1973), Osnovy optiki [Fundamentals of optics], Translated by Rayskaya, N.A., Nauka, Moscow, USSR.
  9. King, W. (1928), Light As wave motion. The Physics book, Springer, Berlin, Germany.
  10. Abilsiitov, G.A., Golubev, V.S., Gontar, V.G. et al. (1991), Tekhnologicheskiye lazery. Spravochnik [Technological lasers: Handbook], Vol. 1, Mashinostroyeniye, Moscow, USSR.
  11. Klimkov, Yu.M., Mayorov, V.S., Khoroshev, M.V. (2014), Vzaimodeystviye lazernogo izlucheniya s veshchestvom: uchebnoye posobiye [Interaction of laser radiation with matter: a tutorial], MIIGAiK, Moscow, Russia.
  12. Kizel, V.A. (1973), Otrazheniye sveta. Seriya: Fizika i tekhnika spektralnogo analiza [Reflection of light. Series: Physics and Technique of Spectral Analysis], Nauka, Moscow, USSR.
  13. Solovyanova, I.P., Naimushin, M.P. (2005), Teoriya volnovykh protsessov. Elektromagnitnyye volny. Uchebnoye posobiye [The theory of wave processes. Electromagnetic waves. Tutorial], GOU VPO USTU - UPI, Yekaterinburg, Russia.
  14. Kuzmichev, V.E. (1989), Zakony i formuly fiziki [Laws and formulas of physics], Naukova dumka, Kiev, USSR.
  15. Ginzburg, V.L. (1960), Rasprostraneniye elektromagnitnykh voln v plazme [Propagation of electromagnetic waves in plasma], Translated by Kozlov, V.D., Fizmatizdat, Moscow, USSR.
  16. Veselago, V.G. (1967), Elektrodinamika veshchestv s odnovremenno otritsatel'nymi znacheniyami ε i µ [Electrodynamics of substances with simultaneously negative values ​​of ε and µ], Vol. 92, no. 3, pp. 517-526.
  17. Krinchik, G.S., Chetkin, M.V. (1961), State diploma register of discoveries of the USSR №175 “Abnormal magnetic susceptibility of ferromagnets in the optical frequency range”, with priority from March 17, 1961; publication date May 27, 1976.
  18. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart W.J. (1999), “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Transactions on Microwave Theory and Techniques, Vol. 47, pp. 2075-2084.
    https://doi.org/10.1109/22.798002
  19. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultzs, S. (2000), “Composite medium with simultaneously negative permeability and permittivity”, Physical Review Letters, Vol. 84, pp. 4184-4187.
    https://doi.org/10.1103/PhysRevLett.84.4184

Full text: PDF

 

CREATION OF AN ADAPTIVE ROBOTIC ARC SURFACING SYSTEM, DESIGNED TO RESTORE COMPLEX SPATIAL FORMS METAL PARTS

V.V. Dolinenko, E.V. Shapovalov, V.A. Kolyada, Т.G. Skuba

Èlektron. model. 2020, 42(6):56-71
https://doi.org/10.15407/emodel.42.06.056

ABSTRACT

The adaptive robotic system creation concept of difficult spatial forms metal parts restoration in which technology of an electric arc surfacing is used is offered. Arc surfacing implementation on the basis of industrial robots equipped with means of adaptation can significantly improve the quality and productivity of parts restoration while reducing the cost of energy and welding materials. The paper uses both theoretical research methods — analysis, idealization and formalization, and experimental — simulation. The solution of the repair CAD workpiece model identification problem and the installation adaptation implementation are considered. The robotic system adaptive capabilities are realized with the help of non-contact means of technical vision a triangulation laser-television sensor. The work results can be used in the areas of adaptive robotic restoration creation by electric arc surfacing in the engineering, railway and energy industries.

KEYWORDS

metal parts restoration of complex spatial forms, electric arc surfacing, robot manipulator, triangulation laser-television sensor, installation adaptation, CAD workpiece model.

REFERENCES

  1. Yeltsov, V.V. (2015). Vosstanovleniye i uprochneniye detaley mashyn [Recovering and hardening of machine parts], TGU, Tolyatti, Russia.
  2. State standart 27674-88 (1992), “Friction, wear and lubrication. Terms and definitions” from March 31, 1988, Izdatelstvo standartov, Moscow, USSR.
  3. State standart 2601-84 (1997), “Welding of metals. Terms and definitions of basic concepts” from July 01, 1985. Izdatelstvo standartov, Moscow, USSR.
  4. FARO SCANARM. URL: https://www.faro.com/russia/products/faro-scanarm.
  5. Lobanov, L.M., Shapovalov, Ye.V. and Kolyada, V.A. (2014), “Application of modern information technologies to solve problems of technological process automation”, Tekhnicheskaya diagnostika i nerazrushayushchiy control, 4, pp. 52-56.
  6. Guzhov, V.I. (2015), Metody izmereniya 3D-profilya ob’yektov. Kontaktnyye, triangulyatsionnyye sistemy i metody strukturirovannogo osveshcheniya [Methods for measuring the 3D profile of objects. Contact, triangulation systems and structured lighting methods], NGTU, Novosibirsk, Russia.
  7. MetraSCAN 750-R. URL: https://www.creaform3d.com/en/metrology-solutions/cube-r-automated-quality-control.
  8. Popov, S.B. (2013), “The use of structured lightning in computer vision systems”, Kompyuternaya optika, 37, no. 2, pp. 233-238.
    https://doi.org/10.18287/0134-2452-2013-37-2-233-238
  9. Skuba, Ò.G., Shapovalov, E.V. and Dolinenko, V.V. (2019), “Position identification in space of objects with complex geometry in ARC surfacing and NDT tasks”, Elektronne modelyuvannya, Vol. 41, no. 1, pp. 67-80.
    https://doi.org/10.15407/emodel.41.01.067
  10. Virtual Robot Experimentation Platform: User Manual. URL: http://www.coppeliarobotics.com/helpFiles.
  11. Attaway, S. (2009), Matlab: A Practical Introduction to Programming and Problem Solving, College of Engineering, Boston University, Boston, MA.
  12. State standart 6937-91 (1991), “Cone crushers. General technical requirements”, Izda­telstvo standartov, Moscow, USSR.
  13. Remondino, F. (2003), “From point cloud to surface: The modeling and visualization problem”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIV-5/W10.

Full text: PDF