Electronic modeling

Vol 42, No 3 (2020)

https://doi.org/10.15407/emodel.42.03

CONTENTS

Mathematical Modeling and Computation Methods

  A.F. Verlan  Yu.O. Furtat 
Approximate Dynamic Models of Non-stationary Measuring Transducers


3-12
  Yu.A. Klevtsov
Modeling of Elliptic Objects with Distributed Parameters


13-26

Computational Processes and systems

    D.V. Efanov, V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Pivovarov
The Method of the Concurrent Error-detection of Combinational Logic Devices Based on the Self-dual Complement to Constant-weight Code


27-52

Application of Modeling Methods and Facilities

  Yu.M. Zaporozhets, A.V. Ivanov, Yu.P. Kondratenko, V.M. Tsurkin
Computer Models for Mode Control of Electric Current Treatment of Melts at Specified Quality Criteria for Cast Products. Part 1


53-70
  A.I. Krasilnikov
Analysis of Cumulant Coefficients of Two-component Mixtures of Shifted Gaussian Distributions with Equal Variances


71-88
  V.D. Samoilov, R.P. Abramovich, A.O. Lepatiev
Computer Technologies For the Development of Training Systems for the Energy Industry


89-98
  S.S. Shevchenko, M.S. Shevchenko
Calculation of Contact Seals as Automatic Control Systems with Inverse Feedback


99-110
  M.Y. Komarov
Requirements for a Cyber Threat Taxonomy of Critical Infrastructure Objects and Analysis of Existing Approaches

111-124

APPROXIMATE DYNAMIC MODELS OF NON-STATIONARY MEASURING TRANSDUCERS

A.F. Verlan  Yu.O. Furtat 

Èlektron. model. 2020, 42(3):03-12
https://doi.org/10.15407/emodel.42.03.003

ABSTRACT

Applied engineering analysis is used to study measurement processes using a meta-mathematical description, which should provide for the presence of analytic approximate dependencies that allow to illustrate, both qualitatively and quantitatively, the influence of physical parameters. Some difficulties in modeling the dynamic properties of non-stationary measuring transducers (MTs) with variable parameters are that there are no accurate analytical methods for solving equations that describe the behavior of dynamic objects in this class. The article discusses some methods of converting and deriving approximate dependencies to describe processes in a MT to a form that allows the use of approximate analytical solutions or efficient numerical methods.

KEYWORDS

approximate analysis, measuring transducer, dynamic model, integral equation.

REFERENCES

  1. Babak, V.P., Babak, S.V. and Yeremenko, V.S. (2014), Teoreticheskiye osnovy infor­matsionno-izmeritel'nykh sistem [Theoretical foundations of information-measuring systems], Kiev, Ukraine.
  2. Ripka, P. and Tipek, A. (2010), Modern sensors: handbook, Chichester: Jon Wiley&Sons.
  3. Verlan', A.F. and Sizikov, V.S. (1986), Integral'nyye uravneniya: metody, algoritmy, prog­rammy: Spravochnoye posobiye [Integral equations: methods, algorithms, programs: Refe­rence book], Nauk. dumka.
  4. Fedorchukm V.A. and Dyachuk, O.A. (2009), Ekvivalentuvannya matematychnykh mode­ley dynamichnykh system [Equivalence of mathematical models of dynamical systems], Matematychne ta komp'yuterne modelyuvannya. Seriya: Tekhnichni nauky, Vol. 2, pp. 155-164.
  5. Kress, R. (2014), Linear integral equations, 3rd, Springer, New York, USA.
    https://doi.org/10.1007/978-1-4614-9593-2
  6. Verlan', D.A. (2014), Metod vyrozhdennykh yader pri chislennoy realizatsii integral'nykh dinamicheskikh modeley [The method of degenerate kernels in the numerical implementation of integral dynamic models], Elektron. modelirovaniye, Vol. 36, no. 3, pp. 41-57.
  7. Smirnov, V.I. (1959), Kurs vysshey matematiki. V 5-ti tomakh. [The course of higher mathematics in 5 volumes], Fizmatgiz, Moscow.

Full text: PDF

 

MODELING OF ELLIPTIC OBJECTS WITH DISTRIBUTED PARAMETERS

Yu.A. Klevtsov 

Èlektron. model. 2020, 42(3):13-27
https://doi.org/10.15407/emodel.42.03.013

ABSTRACT

Based on the spectral theory of non-stationary control systems, the problem of modeling elliptic objects described by linear partial differential equations is considered. The boundary-value problems of Dirichlet, Neumann, and Robin are solved. Simulation examples explaining the application of the method are given. The concept of the transfer function of an object with distributed parameters is introduced.

KEYWORDS

mathematical modeling, spectral theory, objects with distributed parameters, transmission function, boundary value problems.

REFERENCES

  1. Solodovnikov, V.V. and Semenov, V.V. (1974), Spektralnaya teoriya nestatsionarnyih sistem upravleniya [The Spectral Theory of Non-Stationary Control Systems], Nauka, Moscow, Russia.
  2. Klevtsov, Yu.A. (1988), “Spectral Description of Objects with Distributed Parameters”, Electronnoe modelirovanie, Vol. 10, no. 3, pp. 27-31.
  3. Klevtsov, Yu.A. (2001), “Algorithm for modeling a boundary value problem of the third kind”, Electronnoe modelirovanie, Vol. 23, no. 3, pp. 40–46.
  4. Klevtsov, Yu.A. (2011), “Modeling an object with distributed parameters defined on a nonrectangular domain”, Electronnoe modelirovanie, Vol. 33, no. 1, pp. 47 – 55.
  5. Kraskevitch, V.Ye. and Klevtsov, Yu.A. (1981), “Spectral method of structural - parametric identification of objects with distributed parameters”, Vestn. Kiev. Politekhn. In-ta. Ser. Tekhnicheskaya kibernetika, Vol. 5, pp. 10 – 12.
  6. Klevtsov, Yu.A. (2012), “Modeling multidimensional objects with distributed parameters”, Electronnoe modelirovanie, Vol. 34, no. 5, pp. 20 – 40.
  7. Klevtsov, Yu.A. (2016), “Structural transformations of models of systems with distributed parameters”, Electronnoe modelirovanie, Vol. 38, no. 1, pp. 35 – 46.
    https://doi.org/10.15407/emodel.38.01.035
  8. Klevtsov, Yu.A. Modelirovanie obektov s raspredelennymi parametrami. Spektralnyj metod [Modeling objects with distributed parameters. Spectral method], Rusajns, Moscow, Russia.
  9. Lankaster P. Teoriya matric. [ Matrix theory], Nauka, Moscow, Russia.
  10. Bellman R. Vvedenie v teoriyu matricz. [Introduction to matrix theory], Nauka, Moscow, Russia.

Full text: PDF

 

THE METHOD OF THE CONCURRENT ERROR-DETECTION OF COMBINATIONAL LOGIC DEVICES BASED ON THE SELF-DUAL COMPLEMENT TO CONSTANT-WEIGHT CODE

D.V. Efanov, V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Pivovarov

Èlektron. model. 2020, 42(3):27-55
https://doi.org/10.15407/emodel.42.03.027

ABSTRACT

The article proposes a method of the organization of concurrent error-detection (CED) systems, which combines the checkout of the generated code words belonging to the pre-selected constant-weight code and the checkout of each function belonging to the class of self-dual functions. The described method of the CED systems organization allows to increase the detection ability in comparison with the checkout by the method of Boolean complement to the constant-weight codes or to the self-dual functions. The article shows that only constant-weight codes with the same number of zero and ones bits (the so-called «r-out-of-2r» codes, where r is the weight of the code word) can be used in the organization of the combinational logic devices control according to the developed method. The priority in the CED systems organization is given to the constant-weight «2-out-of-4» code. The article develops algorithms for the synthesis of CED systems, the structures of which are completely self-checking in relation to the single stuck-at faults of the outputs of the internal logic elements. The simulation results of the CED system operation on the example of an random combinational logic device showed the high efficiency of the developed method.

KEYWORDS

combinational logic device, concurrent error-detection system, technical state control, fault detection, self-dual complement, constant-weight codes, «2-out-of-4» code.

REFERENCES

  1. Ubar, R., Raik, J., and Vierhaus, H.-T. (2011), Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), Information Science Reference. Hershey – New York: IGI Global, USA.
    https://doi.org/10.4018/978-1-60960-212-3
  2. Drozd, A.V., Kharchenko, V.S., Antoshchuk, S.G., and etc. (2012) Rabochee diagnostirovanie bezopasnykh informatsionno-upravljayustchikh sistem [Objects and Methods of On-Line Testing for Safe Instrumentation and Control Systems]. Kharkov, National Aerospace University "KhAI", Ukraine.
  3. Kharchenko, V., Kondratenko, Yu., and Kacprzyk, J. Green IT Engineering: Concepts, Models, Complex Systems Architectures. Springer Book series "Studies in Systems, Decision and Control".  2017, Vol. 74, 305 p.
    https://doi.org/10.1007/978-3-319-44162-7
  4. Lala, P.K. (2001) “Self-Checking and Fault-Tolerant Digital Design”, San Francisco: Morgan Kaufmann Publishers, USA.
  5. Parkhomenko, P.P., and Sogomonyan, E.S. (1981) Osnovy tekhnicheskoj diagnostiki (optimizatsija algoritmov diagnostirovanija, apparaturnyje sredstva) [Basics of technical diagnostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow, USSR.
  6. Sogomonyan, E.S., and Slabakov, E.V. (1989) Samoproverjaemyje ustrojstva i otkazoustojchivyje sistemy [Self-checking devices and failover systems], Radio & Svjaz`, Moscow, USSR.
  7. Goessel, M., and Graf, S. (1994) “Error Detection Circuits”, London: McGraw-Hill, UK.
  8. Nicolaidis, M., and Zorian, Y. (1998) “On-Line Testing for VLSI – А Compendium of Approaches”, Journal of Electronic Testing: Theory and Applications, 1998, no. 12, pp. 7-20.
    https://doi.org/10.1023/A:1008244815697
  9. Mitra, S., and McCluskey, E.J. (2000) “Which Concurrent Error Detection Scheme to Сhoose?”, Proc. of International Test Conference, 2000. USA, Atlantic City, NJ, 3-5 October 2000, pp. 985—994. DOI: 1109/TEST.2000.894311.
  10. Gavrilov, S.V., Tel'puhov, D.V., Zhukova, T.D., and Gurov, S.I. (2018) “Ispol'zovanie informacionnoj izbytochnosti pri postroenii sboeustojchivyh kombinacionnyh skhem” [Synthesis of fault-tolerant combination schemes by introducing information redundancy], Tavricheskij vestnik informatiki i matematiki, 2018, Vol. 2, Issue 39, pp. 29—44.
  11. Bennetts, R.G. (1990) Proektirovanie testoprigodnyh logicheskih skhem [Design of Testable Logic Circuits]. Moscow, Radio & Svjaz`, Moscow, USSR.
  12. Ryan, W.E., and Lin, S. (2009) Channel Codes: Classical and Modern. Cambridge University Press, UK.
    https://doi.org/10.1017/CBO9780511803253
  13. Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D. (2008) New Methods of Concurrent Checking: Edition 1. – Dordrecht: Springer Science+Business Media B.V., Netherlands.
  14. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Dmitriev, V.V. (2017) “Novye struktury sistem funkcional'nogo kontrolya logicheskih skhem” [New structures of the concurrent error detection systems for logic circuits], Avtomatika i telemekhanika, no. 2, pp. 127—143.
  15. Dong, H. (1984) “Modified Berger Codes for Detection of Unidirectional Errors”, IEEE Transaction on Computers, 1984, Vol. C-33, рp. 572—575.
    https://doi.org/10.1109/TC.1984.1676484
  16. Piestrak, S.J. (1995) Design of Self-Testing Checkers for Unidirectional Error Detecting Codes. – Wrocław: Oficyna Wydawnicza Politechniki Wrocłavskiej, Poland.
  17. Das, D., Touba, N.A., Seuring, M., and Gossel, M. (2000) “Low Cost Concurrent Error Detection Based on Modulo Weight-Based Codes”, Proc. of IEEE 6th International On-Line Testing Workshop (IOLTW). Spain, Palma de Mallorca, July 3-5, 2000, pр. 171—176. DOI: 1109/OLT.2000.856633.
  18. Gallager, R.G. (2008) “Principles of Digital Communication”, Cambridge University Press, UK.
    https://doi.org/10.1017/CBO9780511813498
  19. Piestrak, S.J., and Patronik, P. (2014) “Design of Fault-Secure Transposed FIR Filters Protected Using Residue Codes”, 17th Euromicro Conference on Digital System Design, 27-29 August 2014, Verona, Italy, pp. 575-582.
    https://doi.org/10.1109/DSD.2014.110
  20. Tel'puhov, D.V., Demeneva, A.I., Zhukova, T.D., and Hrushchev, N.S. (2018) “Issledovanie i razrabotka sistem avtomatizirovannogo proektirovaniya skhem funkcional'nogo kontrolya kombinacionnyh logicheskih ustrojstv” [The Research and Development of Automation Systems for the Concurrent Error Detection Combinational Circuits], Elektronnaya tekhnika. Seriya 3: Mikroelektronika, 2018, Issue 1, pp. 15—22.
  21. Stempkovskiy, A., Telpukhov, D., Gurov, S. et al. (2018) “R-code for concurrent error detection and correction in the logic circuits”, 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 29 January – 1 February 2018, Moscow, Russia, pp. 1430-1433.
    https://doi.org/10.1109/EIConRus.2018.8317365
  22. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V. (2018) “Kody Hemminga v sistemah funkcional'nogo kontrolya logicheskih ustrojstv” [Hamming codes in concurrent error detection systems of logic devices], St. Petersburg, Nauka, 2018, 151 p.
  23. Yablonskij, S.V. (2003) “Vvedenie v diskretnuyu matematiku: Ucheb. posobie dlya vuzov” [Introduction to Discrete Mathematics: Textbook], Pod red. V.A. Sadovnicheva, 4-e izd., ster. M.: «Vysshaya shkola», Russia.
  24. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Gossel', M. (2001) “Samodvojstvennye disk­retnye ustrojstva” [Self-Dual Discrete Devices], St. Petersburg: Energoatomizdat, Russia.
  25. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Valiev R.Sh. (2006) “Sintez samodvojst­ven­nyh diskretnyh sistem” [Synthesis of Self-Dual Discrete Systems], St. Petersburg, Elmor, Russia.
  26. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. et al. (2019) “Self-Dual Complement Method up to Constant-Weight Codes for Arrangement of Combinational Logical Circuits Concurrent Error-Detection Systems”, Proc. of 17th IEEE East-West Design & Test Symposium (EWDTS`2019), Batumi. Georgia, September 13-16, 2019, pp. 136-143.
    https://doi.org/10.1109/EWDTS.2019.8884398
  27. Goessel M., Morozov A.V., Sapozhnikov V.V., and Sapozhnikov Vl.V. (2003) “Logicheskoe dopolnenie – novyj metod kontrolya kombinacionnyh skhem” [Logic Complement, a New Method of Checking the Combinational Circuits], Avtomatika i tele­mekhanika, [Automation and Remote Control], no. 1, pp. 167—176.
  28. Morozov, A., Gössel, М., Saposhnikov, V., Saposhnikov, Vl. (2004) “Complementary Circuits for On-Line Detection for 1-out-of-3 Codes”, ARCS 2004 – Organic and Pervasive Computing, Workshops Proceedings. March 26, 2004, Augsburg, Germany, pp. 76—83.
  29. Goessel M., Morozov A.V., Sapozhnikov V.V., and Sapozhnikov Vl.V. (2005) “Kontrol' kombinacionnyh skhem metodom logicheskogo dopolneniya” [Checking Combinational Circuits by the Method of Logic Complement], Avtomatika i telemekhanika, [Automation and remote Control], 2005, no. 8, pp. 161—172.
  30. Sen, S.K., and Roy, S.S. (2008) “An Optimized Concurrent Self-Checker Using Constraint-Don’t Cares and 1-out-of-4 Code”, National Conference (AECDISC-2008) in Asansol Engineering College, held during 1-2 August 2008.
  31. Das D.K., Roy S.S., Dmitiriev A. et al (2012) “Constraint Don’t Cares for Optimizing Designs for Concurrent Checking by 1-out-of-3 Codes”, Proc. of the 10th International Workshops on Boolean Problems. Freiberg, Germany, September, 2012, pp. 33—40.
  32. Sapozhnikov V., Sapozhnikov Vl., and Efanov D. (2016) “Postroenie polnost'yu samopro­veryaemyh struktur sistem funkcional'nogo kontrolya s ispol'zovaniem ravnovesnogo koda «1 iz 3»” [Formation of Totally Self-Checking Structures of Concurrent Error Detection Systems With Use of Constant-Weight Code “1-out-of-3”], Elektronnoe modelirovanie. 2016, vol. 38, no. 6, pp. 25—43.
  33. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Pivovarov, D.V. (2017) “Metod logicheskogo dopolneniya na osnove ravnovesnogo koda «1 iz 4» dlya postroeniya polnost'yu samoproveryaemyh struktur sistem funkcional'nogo kontrolya” [Boolean Complement Method Based on Constant-Weight Code “1-out-of-4” for Formation of Totally Self-Checking Concurrent Error Detection Systems], Elektronnoe modelirovanie, 2017, 39, Issue 2, pp. 15—34.
  34. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Pivovarov, D.V. (2017) “Sintez sistem funkcional'nogo kontrolya mnogovyhodnyh kombinacionnyh skhem na osnove metoda logicheskogo dopolneniya” [Synthesis of Concurrent Error Detection Systems of Multioutput Combinational Circuits Based on Boolean Complement Method], Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika, 2017, Issue 4, pp. 69—80.
    https://doi.org/10.17223/19988605/41/9
  35. Morozov A., Saposhnikov V.V., Saposhnikov Vl.V., and Goessel M. (2000) “New Self-Checking Circuits by Use of Berger-codes”, Proceedings of the 6th IEEE International On-line Testing Workshop, 3-5 July 2000, Palma de Mallorca, Spain, pp. 171—176.
    https://doi.org/10.1109/OLT.2000.856626
  36. Reynolds, D.A., and Meize, G. (1978) “Fault Detection Capabilities of Alternating Logic”, IEEE Transactions on Computers, 1978, Vol. C-27, Is. 12, рp. 1093—1098.
    https://doi.org/10.1109/TC.1978.1675011
  37. Gessel', M., Dmitriev, A.V, Sapozhnikov, V.V, and Sapozhnikov, Vl.V. (1999) “Samotes­tirue­maya struktura dlya funkcional'nogo obnaruzheniya otkazov v kombinacionnyh skhe­mah [A Functional Fault-Detection Self-Test for Combinational Circuits], Avtomatika i telemekhanika, 1999, Issue 11, pp. 162—174.\
  38. Carter, W.C., Duke, K.A., and Schneider, P.R. (1968) “Self-Checking Error Checker for Two-Rail Coded Data”, United States Patent Office, filed July 25, 1968, ser. No. 747533, patentedJan. 26, 1971, NY., 10 p.
  39. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V. (2019) “Osnovy teorii nadezhnosti i tekhnicheskoj diagnostiki” [Fundamentals of the Theory of Reliability and Technical Diagnostics], St.Petersburg, Izd-vo «Lan'», Russia.
  40. Sapozhnikov V.V., and Sapozhnikov Vl.V. (1992) “Samoproveryaemye testery dlya ravnovesnyh kodov” [Self-Checking Constant-Weight Codes Checkers], Avtomatika i telemekhanika, 1992, no. 3, pp. 3―35.
  41. Sapozhnikov, V., Sapozhnikov, Vl., and Efanov, D. (2016) “Concurrent Error Detection of Combinational Circuits by the Method of Boolean Complement on the Base of «2-out-of-4» Code”, Proc. of 14th IEEE East-West Design & Test Symposium (EWDTS`2016). Yerevan, Armenia, October 14-17, 2016, pp. 126-133. 
    https://doi.org/10.1109/EWDTS.2016.7807677
  42. Aksjonova, G.P. (1979), “Neobkhodimije i dostatochnyje uslovija postroenija polnost`ju proverjaemykh shem svjortki po modulju 2” [Necessary and sufficient conditions for the design of totally checking circuits of compression by modulo 2], Avtomatika i Telemekhanika [Automation and Remote Control], 1979, no. 9, pp. 126-135.
  43. Sapozhnikov V.V., Sapozhnikov Vl.V., and Efanov D.V. (2015) “Klassifikatsija oshibok v informatsionnykh vektorakh sistematicheskikh kodov” [Errors Classification in Information Vectors of Systematic Codes], Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie, 2015, vol. 58, no. 5, pp. 333—343. 
    https://doi.org/10.17586/0021-3454-2015-58-5-333-343

Full text: PDF

 

COMPUTER MODELS FOR MODE CONTROL OF ELECTRIC CURRENT TREATMENT OF MELTS AT SPECIFIED QUALITY CRITERIA FOR CAST PRODUCTS. PART 1.

Yu.M. Zaporozhets, A.V. Ivanov, Yu.P. Kondratenko, V.M. Tsurkin

Èlektron. model. 2020, 42(3):53-69
https://doi.org/10.15407/emodel.42.03.053

ABSTRACT

The possibility of modes control of electric current treatment (MCECT) is justified. It is shown that features of multifactor influence of control parameters in the process of melt treatment on castings structural formation can be revealed only by numerical experiments with the help of adequate computer models. The main principles of construction of the automated system of MCECT are formulated and the structure of the integrated three-component information system (ITIS) for its realization by means of computer models of ECT multiphysical processes is developed. Computer models serve as the system base of the algorithmic paradigm embedded in ITIS, which includes the identification of experimental samples of castings with standard prototypes and prognostic algorithms for the modes controlling of electric current melt processing.

KEYWORDS

casting, quality, electric current treatment, mode, control, information system, computer model, algorithm.

REFERENCES

  1. Tsurkin, V.N. (2008), “Cast metal quality management concepts”, Metal and casting of Ukraine, no. 9, pp. 25–28.
  2. Gerasimov, V.G., Kliuev, V.V., Shaternikov V.E. (1985), Metody i pribory elektromagnitnogo kontrolya promyshlennyh izdelij [Methods and tools for electromagnetic testing of industrial products], Moscow, Russia, Energoatomizdat.
  3. Dobrzańsk, L.A., Krupiński, M. and Sokolowski, J.H. (2007), “Methodology of automatic quality control of aluminium castings”, Jour. Achiev. Mater. Manuf. Eng. (JAMME), Vol. 20, no. 1-2, рp. 69 – 78.
  4. Świłło, S.J., Perzyk, M. (2013). “Surface Casting Defects Inspection Using Vision System and Neural Network Techniques” , Arch. Foundry Eng. 2013, Vol. 13, no. 4, pp. 103 – 106.
    https://doi.org/10.2478/afe-2013-0091
  5. Birkhold, M., Friedrich, C. and Lechler, A. (2015), “Automation of the Casting Process using a model-based NC Architecture”, Science Direct, 2015, Papers Online 48-17, рр.195–200.
    https://doi.org/10.1016/j.ifacol.2015.10.102
  6. Frank Herold, Rolf-Rainer Grigat, Klaus Bavendiek (2002), “A New Analysis and Classification Method for Automatic Defect Recognition in X-Ray Images of Castings”, NDT.net, 2002, 10, (7), available at: https://www.ndt.net/article/ecndt02/207/207.htm.
  7. Nikitin, K. V., Nikitin, V. I., Timoshkin, I. Yu. et al. (2014), “Hereditary influence of the structure of charge materials on the density of aluminum alloys of the Al-Si system”, Izvestiya Vuzov. Tsvetnaya Metallurgiya (Universities' Proceedings Non-Ferrous Metallurgy), 6, pp. 22 – 27; 
    https://doi.org/10.17073/0021-3438-2014-6-22-27
  8. Tsurkin, V.N., Sinchuk, A.V., Ivanov, A.V. (2011) “Electric current treatment of liquid and crystallizing alloys in casting technologies”, Eng. Appl. Electrochem., Vol. 46, no. 5, pp. 456–464.
    https://doi.org/10.3103/S1068375511050115
  9. Ban, C., Han, Y., Ba, Q. et al. (2007), “Influence of pulse electric current on solidification structure of Al-Sn alloy”, Electromagn. Process. Mater., no. 8, pp. 34–37.
  10. He Lijia, Wang Jianzhong, Qi Jingang, Du Huiling and Zhao Zuofu (2010), “Influences of electric pulse on solidification structure of LM-29 Al-Si alloy”, Сhina Foundry, Vol. 7, no.2, pp. 153 – 156.
  11. Zhang, Y., Song, C., Zhu L. et al. (2011), “Influence of Electric-Current Pulse Treatment on the Formation of Regular Eutectic Morphology in an Al-Si Eutectic Alloy”, Mater. Trans., Vol. 42, pp. 604–611  
    https://doi.org/10.1007/s11663-011-9502-9
  12. Jingang Qi, Yang Li, Tukur S.A. et al. (2014), “A model study for the electric pulse frequency effects on the solidification behavior of Al-5%Сu alloy”, Intern. Journal of Scientific & Technology Research, Vol 3, no. 9, pр. 267–274.
  13. Nakada, M., Shiohara, Y., Flemings, M.C. (1990), “Modification of solidification structures by pulse electric discharging” ISIJ Int., Vol 30, pp. 27–33.
    https://doi.org/10.2355/isijinternational.30.27
  14. Ivanov, A.V., Sinchuk, A.V., Ruban, A.S. (2012), “Effect of the Technological Parameters of the Melt Treatment by a Electric Pulse Current on the Mixing Process”, Surf. Eng. Appl. Electrochem., 2012, Vol. 48, no. 2, pр. 180–186.
    https://doi.org/10.3103/S106837551202007X
  15. Zhang, Y. H., Xu, Y. Y., Ye, C. Y. et al. (2018), “Relevance of electrical current distribution to the forced fow and grain refnement in solidifed Al-Si hypoeutectic alloy”, Scientific Reports, 8:3242 | DOI: 0.1038/ s41598-018-21709-y.
  16. Eskin, D.G., Mi, J. (2019) Solidification Processing of Metallic Alloys under External Fields, Springer, Berlin/Heidelberg, Germany.
    https://doi.org/10.1007/978-3-319-94842-3
  17. Ivanov, A.V., Tsurkin, V.N. (2018), “Peculiarities of Distribution of Electromagnetic and Hydrodynamic Fields for Conductive Electric Current Treatment of Melts in Different Modes”, Surf. Eng. Appl. Electrochem, 2018, Vol. 55, no. 1, pр. 53–64.
    https://doi.org/10.3103/S1068375519010101
  18. Yuriy Zaporozhets, Artem Ivanov, Yuriy Kondratenko (2019), “Geometrical Platform of Big Database Computing for Modeling of Complex Physical Phenomena in Electric Current Treatment of Liquid Metals”, Data, 4, Issue 4;
    https://doi.org/10.3390/data4040136
  19. Kol’cov, D.A. (2006), Metody analiza i identifikacii neopredelennyh modelej eksperimenta [Methods of analysis and identification of uncertain experimental models], Avtoref. disser. …kand. fiz.-mat. nauk. Moscow.
  20. Kondratenko, Y.P., Joachim Rudolph, Kozlov, O.V., Zaporozhets, Y.M., Gerasin, O.S. (2017), “Neuro-fuzzy observers of clamping force for magnetically operated movers of mobile robots”, Tekhnichna Elektrodynamika [Technical Electrodynamics], no. 5, pp. 53 – 61.
    https://doi.org/10.15407/techned2017.05.053
  21. Yakunin, Ye.A (2012),Mathematical simulation of crystallization process in application to prognostication of structure of hard-tempered from the liquid state metals”, State Higher Educational Institution “National Mining University”, 3, pp. 63 – 67.
  22. Farrokhnejad Mehdi (2013), Numerical Modeling of Solidification Process and Prediction of Mechanical Properties in Magnesium Alloys, Electronic Thesis and Dissertation Repository, 1459, available at: https:// ir.lib.uwo.ca/etd/1459.
  23. Andrushevich, A.A et al. (2012), Atlas mikrostruktur chernyh i cvetnyh metallov i splavov: ucheb. posobie [Atlas of microstructures of ferrous and non-ferrous metals and alloys: textbook], Minsk, Belarus.
  24. Nikrityuk, P.A., Eckert, K., Grundmann, R. (2005), “Numerical study of the influence of an applied electrical potential on the solidification of a binary metal alloy”, Wiley Online Library, 2-nd Sino-German Workshop on Electromagnetic Processing of Materials, Dresden, Germany, available at:
    https://doi.org/10.1002/9783527607969.ch41
  25. Jianzheng Guo and Mark Samonds (2011), “Simulation of Casting and Solidification Pro­cesses” The journal of the Minerals, Metals & Materials Society
    https://doi.org/10.1007/s11837-011-0104-4
  26. Povodator, A. M., Konashkov, V. V., Tcepelev, V. C., V’yuhin, V. V. (2012), “Study on the high-temperature melts properties through the use of correlation analysis”, Izvestiya vuzov. Chernaya metallurgiya,Vol. 55, no. 2, pp. 18–
    https://doi.org/10.17073/0368-0797-2012-2-18-21
  27. Manjunath Patel, Robins Mathew, Prasad Krishna, Mahesh B. Parappagoudar (2014), “Investigation of squeeze cast process parameters effects on secondary dendrite arm spacing using statistical regression and artificial neural network models”, ScienceDirect, Procedia Technology, Vol. 14, рp. 149 – 156.
    https://doi.org/10.1016/j.protcy.2014.08.020
  28. Fedin, S. S. (2010), “Adaptive neyrosetevaya model of prognostication and quality
    of multistage technological processes management”, Energy saving-Power engineering-Energy audit, 4 (74), c. 62 – 70.
  29. Nastac, L., Zhang, D. (2014), “3D Stochastic Modeling of Microstructure Evolution During the Solidification of Dendritic Alloys”, 2nd International Congress on 3D Materials Science, TMS, pp. 17-18 
    https://doi.org/10.1007/978-3-319-48123-4_3
  30. Zhu, M.F., Hong, C.P., Stefanescu, D.M. and Chang, Y.A. (2007), “Computational Modeling of Microstructure Evolution in Solidification of Aluminum Alloys”, Metallurgical and Materials  Transactions B Vol. 38B, рp. 517 –  524 
    https://doi.org/10.1007/s11663-007-9052-3

Full text: PDF