Electronic modeling

Vol 40, No 5 (2018)

https://doi.org/10.15407/emodel.40.05

CONTENTS

Mathematical Modeling and Computation Methods

  VYNNYCHUK S.D., MISKO V.M.
Method Multiple Quadratic k-Silve Integer Factoring


3-26
  KALINOVSKY Ya.A., BOYARINOVA Yu.E., KHITSKO Ya.V., SUKALO A.S.
Use of Methods for Generating Isomorphic Hypercomplex Number Systems to Increase the Efficiency of Multiplying Hypercomplex Numbers


27-40
  MAKARICHEV A.V., KUD A.A., SHCHUKIN A.B.
Assessment of the Probability of System Failure with Maximum Service Accumulation Elements

41-48 

Computational Processes and Systems

  ZHARIKOV E.V.
Structural Optimization of the Resource Consumption Forecasting Models in Virtualized Environment


49-66
  ZUBOK V.Yu.
Determining the Ways of Counteraction to Cyberattacks on the Internet Global Routing

67-76

Application of Modeling Methods and Facilities

 
77-90
  DUNAYEVSKA N.I., ZASIADKO YA.I., SHCHUDLO T.S.
The Study of Thermal Destruction Kinetics of Coal and Solid Biomass Mixtures


91-110
  KUTSAN U.G., GODUN O.V., KYRIANCHUK V.N.
Application of Nest Code for Comparative Economic Evaluation of Energy Systems

111-118

 

THE METHOD OF MULTIPLE QUADRATIC K-SILVE INTEGER FACTORIZATION

S.D. Vynnychuk, V.M. Misko
THE GEORGY PUKHOV INSTITUTE FOR ENERGY MODELLING THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE

Èlektron. model. 2018, 40(5):03-26
https://doi.org/10.15407/emodel.40.05.003

ABSTRACT

A modification of the quadratic sieve method (QS) was proposed, in which the search for B-smooth numbers uses the polynomials X2kN. In contrast to the QS and multiple polynomial quadratic sieve (MPQS) methods, the method ùà multiple quadratic k-sieve (MQkS) uses a common factor base (FB), which was detailed for each k value. The algorithm takes into account the fact that, the number of B-smooth is relatively larger with smaller values of the numbers of the sifting interval. It was confirmed by the data of numerical experiments. The steps for the proposed algorithm and their implementation were described. On the basis of numerical experiments, it was demonstrated that, using of the MQkS method, it is possible to achieve a decrease in the average time of the formation of the B-smooth set over against of the QS method with a smaller size of FB.

KEYWORDS

integer factoring, quadratic k-sieve, multiple sieve.

REFERENCES

  1. Gorbenko, D., Dolgov, V.I., Potiy, A.V., Fedorchenko, V.N. (1995). Analiz kanalov uyazvimosti sistemyi RSA. Bezopasnost’ informatsii, 2, 22–26.
  2. Daniel L. Brown. Breaking RSA May Be As Difficult As Factoring. Retrieved from: http://www.pgpru.com/novosti/2005/1026vzlomrsabezfaktorizaciirealennoneeffektiven.
  3. Kannan Balasubramanian; M Algorithmic strategies for solving complex problems in cryptography. // Advances in information security, privacy, and ethics (AISPE) book series. Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : IGI Global, [2018].
  4. Quadratic Retrieved from: https://en.wikipedia.org/wiki/Quadratic_sieve.
  5. The Quadratic Sieve Factoring Algorithm Eric Landquist MATH 488: Cryptographic Algorithms December 14, 2001.
  6. RSA Retrieved from: https://en.wikipedia.org/wiki/RSA_numbers.
  7. Carl Smooth numbers and the quadratic sieve. Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, MSRI Publications, 44:69-81, 2008.
  8. Anthony Vazzana; David Garth; Martin J Introduction to number theory. Boca Raton : Chapman & Hall/CRC, 2015.
  9. Victor Zhenyu Guo; William David Exponential sums, character sums, sieve methods and distribution of prime numbers. [Columbia, Missouri] : [University of Missouri], May, 2017.
  10. Crandall, , & Pomerance, C.B. (2010). Prime numbers a computational perspective (Seconded.). New York, NY: Springer.
  11. Ishmuhametov,T. (2011). Metodyi faktorizatsii naturalnyih chisel. Kasan: Kasan Un.
  12. Sahadeo Padhye; Rajeev Anand Sahu; Vishal Introduction to Cryptography. Boca Raton, FL : CRC Press, 2018. https://doi.org/10.1201/9781315114590
  13. Misko, (2018). Pryskorennia metodu kvadratychnoho resheta na osnovi vykorystanni umovno B-hladkykh  hysel. Zbirnyk « System research and information technologies», 1.
  14. Vinnichuk, & Misko, V. (2017). Pryskorennia metodu kvadratychnoho resheta na osnovi vykorystanni rozshyrenoi faktornoi bazy ta formuvannia dostatnoi kilkosti B-hladkykh chysel. Zbirnyk «Information technology and security», 5, 2nd ser.
  15. Vynnychuck , Misko V. Acceleration analysis of the quadratic sieve method based on the online matrix solving. // Mathematics and cybernetics – applied aspects., 2018. DOI: 10.15587/1729-061.2018.133603
  16. Silverman D. The multiple polynomial quadratic sieve // Math. Comp. 1987. V. 48 (177). P. 329-339. https://doi.org/10.1090/S0025-5718-1987-0866119-8
  17. D. Breitenbacher, I. Homoliak, J. Jaros, P. Hanacek. Impact of Optimization and Parallelism on Factorization Speed of SIQS. Journal of Systemics 2016; 4 (3), 51-58.

Full text: PDF

USE OF METHODS FOR GENERATING ISOMORPHIC HYPERCOMPLEX NUMBER SYSTEMS TO INCREASE THE EFFICIENCY OF MULTIPLYING HYPERCOMPLEX NUMBERS

Ya.A. Kalinovsky, Institute for information recording NAS of Ukraine
Yu.E. Boyarinova, 
Institute for information recording NAS of Ukraine, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
Ya.V. Khitsko,
 National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
A.S. Sukalo, 
National University of Water Management and Environmental Management

Èlektron. model. 2018, 40(5):27-40
https://doi.org/10.15407/emodel.40.05.027

ABSTRACT

The method of multiplication of hypercomplex numbers is proposed, which provides a significant reduction in the volume of real operations. The method consists in the transition to weakly filled isomorphic hypercomplex number systems (HNS) in which a smaller number of real multiplications is required for hypercomplex multiplication. Such pairs of isomorphic HNS, as well as expressions for isomorphism operators, have been synthesized. The developed method should be used to construct fast linear convolutional algorithms.

KEYWORDS

hypercomplex numerical system, linear convolution, isomorphism, multiplication, complex numbers, double numbers.

REFERENCES

  1. Bleichut, (1984), Bystrye algoritmy tsyfrovoy obrabotki signalov [Rapid algorithms of digital signal processing], Mir, Moscow. USSR.
  2. Nussbaumer, (1985), Bystroe preobrazovanie Furie i algoritmy vychisleniya svyortok [Fast Fourier transform and computation of convolution algorithms], Radio and svyaz, Moscow, USSR.
  3. Drozd, A. and Kirichenko, V.V. (1980), Konechno-mernye algebry [Finite-dimensional algebras], Vyshcha shkola, Kiev, USSR.
  4. Sinkov, V. Boyarinova, Yu.E. and Kalinovsky, Ya.A. (2010), Konechno-mernye giperkompleksnye chislovye sistemy. Osnovy teorii. Primeneniya. [Finite-dimensional hypercomplex numerical systems. Fundamentals of the theory. Applications], Infodruk, Kiev, Ukraine.
  5. Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2012), Vysoko-razmernye izomorfmye giperkompleksnye chislovye sistemy i ikh ispolzovanie dlya povysheniya effektivnosti vychislenii [High-dimensional isomorphic hypercomplex number systems and their use for increasing the efficiency of computations], Infodruk, Kiev, Ukraine.
  6. Kalinovsky, A. (2017), “Effective algorithms for solving the isomorphism equations for hypercomplex number systems using exponential representations”, Elektronnoe modelirovanie, Vol. 39, no. 1, pp. 75-90.
  7. Toyoshima, (2002), Computationally efficient implementation of hypercomplex digital filters, IEICE Trans. Fundamentals, E85-A, 8, pp. 1870-1876.
  8. Schutte, D. (1991), Digitalfilter zur Verarbeitung komplexer und hypercomplexer Signale, Dissertation. Paderborn, 1991.
  9. Schulz, , Seitz, J. and LustosadaCosta, J.P. (2011), Widely linear SIMO filtering for hypercomplex numbers, IEEE Information Theory Workshop, pp. 390-394. https://doi.org/10.1109/ITW.2011.6089486
  10. Kalinovsky, A., Boyarinova, Yu.E. and Khitsko, Ya.V. (2015), “Optimization of the total parametric sensitivity of reversible digital filters with coefficients in non-canonical hypercomplex number systems”, Elektronnoe modelirovanie, Vol. 37, no. 5, pp. 117-126.
  11. Kalinovsky, O. (2007), “The development of method in the theory of hypercomplex number systems for mathematical modeling and computing is calculated”, Dissertations of Dr Sc. (Tech.), 01.05.02, Kyiv, Ukraine.
  12. Kalinovsky, Ya.A. (2013), “Structure of the hypercomplex method for fast calculation of linear convolution of discrete sign”, Reestratsiya, zberigannya i obrobka dannykh, Vol. 15, no. 1, pp. 31-44.

Full text: PDF

STRUCTURAL OPTIMIZATION OF THE RESOURCE CONSUMPTION FORECASTING MODELS IN VIRTUALIZED ENVIRONMENT

E.V. Zharikov
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»

Èlektron. model. 2018, 40(5):49-66
https://doi.org/10.15407/emodel.40.05.049

ABSTRACT

Providing a given quality of cloud services under non-stationary workload is one of the main tasks in managing a cloud data center. To ensure a given service quality, it is necessary to apply a proactive approach to managing computing resources. It is possible to prevent problems of inadequate allocation of resources or excessive allocation of resources by forecasting the consumption of resources by virtual machines or containers. In this paper, the author proposes an adaptive method for forecasting the consumption of computational resources, which provides a smaller forecasting error than using a single forecasting method with a model obtained with fixed-size training data. The evaluation of the proposed method show that the accuracy of the forecast increases on average from 2.4% to 23.6%, depending on the statistical characteristics of the time series presented by monitoring data. Increasing the accuracy of the computing resources consumption forecast allows to reduce power consumption and to reduce the number of service-level agreement violation by more accurately allocating the necessary resources to the virtualized ap- plications of the cloud data center.

KEYWORDS

cloud computing, data center, forecasting, time series, virtualization, energy efficiency.

REFERENCES

  1. Barham, Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., and Warfield, A. (2003), «Xen and the art of virtualization», In ACM SIGOPS operating systems review, vol. 37, no. 5, pp. 164—177.
    https://doi.org/10.1145/1165389.945462
  2. Chen, , He, W., Liu, J. et al (2008), «Energy-Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet Services», In NSDI, Vol. 8, pp. 337-350.
  3. Padala, Hou, K. Y., Shin, K. G., et al (2009), «Automated control of multiple virtualized resources», Proc. of the ACM European conference on Computer systems (EuroSys'09).
    https://doi.org/10.1145/1519065.1519068
  4. Gross, , and Galiana, F. D. (1987), «Short-term load forecasting», Proceedings of the IEEE, 75(12), pp. 1558—1573.
  5. Xiao, , Song, W., and Chen, Q. (2013), «Dynamic resource allocation using virtual machines for cloud computing environment», Parallel and Distributed Systems, IEEE Transac-tions on, vol. 24, no. 6, pp. 1107—1117.
  6. Xue,, Yan, F., Birke, R. et al (2015), «PRACTISE: Robust prediction of data center time series», 11th International Conference on Network and Service Management (CNSM), pp. 126—134.
    https://doi.org/10.1109/CNSM.2015.7367348
  7. Farahnakian, , Liljeberg, P., and Plosila, J. (2013), «LiRCUP: Linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers», 39th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA), pp. 357—364.
    https://doi.org/10.1109/SEAA.2013.23
  8. Islam, Keung, J., Lee, K., and Liu, A. (2012), «Empirical prediction models for adaptive resource provisioning in the cloud», Future Generation Computer Systems, vol. 28, no. 1, pp. 155—162.
    https://doi.org/10.1016/j.future.2011.05.027
  9. Dabbagh, M., Hamdaoui, B., Guizani, M., and Rayes, A. (2015), «Energy-efficient resource allocation and provisioning framework for cloud data centers», IEEE Transactions on Network and Service Management, vol. 12, no. 3, pp. 377—391.
    https://doi.org/10.1109/TNSM.2015.2436408
  10. Naseera, Rajini, G. K., Prabha, N. A., and Abhishek, G. (2015), «A comparative study on CPU load predictions in a computational grid using artificial neural network algorithms», Indian Journal of Science and Technology, vol. 8, no. 35.
    https://doi.org/10.17485/ijst/2015/v8i35/82733
  11. Naseera, , Rajini, G. K., and Reddy, P. S. K. (2016), «Host CPU Load Prediction Using Statistical Algorithms a comparative study», International Journal of Computer Technology and Applications, 9 (12). pp. 5577—5582.
  12. Dinda, A. (2006), «Design, implementation, and performance of an extensible toolkit for resource prediction in distributed systems», IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 2, pp. 160—173.
    https://doi.org/10.1109/TPDS.2006.24
  13. Box, E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015), «Time series analysis: fore-casting and control», 5th ed. Hoboken, NJ, USA: John Wiley & Sons.
  14. Montgomery, Douglas , Elizabeth A. Peck, and G. Geoffrey Vining, (2015). «Introduction to linear regression analysis», John Wiley & Sons.
  15. Park, , and Pai, V. S. (2006), «CoMon: a mostly-scalable monitoring system for PlanetLab», ACM SIGOPS Operating Systems Review, pp. 65-47.
  16. Telenyk, Zharikov, E., Rolik, O. (2017), «Architecture and Conceptual Bases of Cloud IT Infrastructure Management», Advances in Intelligent Systems and Computing, Springer, vol. 512, pp. 41—62.
    https://doi.org/10.1007/978-3-319-45991-2_4
  17. R Core Team (2018), «R: A language and environment for statistical computing», R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  18. Jorgensen, (1995), «Experience with the accuracy of software maintenance task effort prediction models», IEEE Transactions on Software Engineering, vol. 21, pp. 674—681.
  19. Hyndman, , Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). «Forecasting with exponential smoothing: the state space approach», Springer Science & Business Media.
  20. Holt C. (2004), «Forecasting seasonals and trends by exponentially weighted moving averages», International journal of forecasting, vol. 20, no. 1, pp. 5-10.
    https://doi.org/10.1016/j.ijforecast.2003.09.015
  21. Gardner Jr S., McKenzie E. D. (1985), «Forecasting trends in time series», Management Science, vol. 31, no. 10, pp. 1237-1246.
    https://doi.org/10.1287/mnsc.31.10.1237
  22. GWA-T-12 Bitbrains [Online] Available from: http://gwa.ewi.tudelft.nl/datasets/gwa-t-12- bitbrains [Accessed September 12, 2018].
  23. Hyndman, J., and Khandakar, Y. (2008), «Automatic time series forecasting: The forecast package for R», Journal of Statistical Software, 27(1), pp. 1—22. Retrieved from https://www.jstatsoft.org/article/view/v027i03
  24. Shen, , van Beek, V., and Iosup, A. (2015), «Statistical characterization of business-critical workloads hosted in cloud datacenters», 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 465—474.
  25. Hyndman R, Bergmeir C, Caceres G, et al (2018), «_forecast: Forecasting functions for time series and linear models_», R package version http://pkg.robjhyndman.com/forecast>.

Full text: PDF

DETERMINING THE WAYS OF COUNTERACTION TO CYBERATTACKS ON THE INTERNET GLOBAL ROUTING

V.Yu. Zubok
THE GEORGY PUKHOV INSTITUTE FOR ENERGY MODELLING THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE

Èlektron. model. 2018, 40(5):67-77
https://doi.org/10.15407/emodel.40.05.067

ABSTRACT

Attacking global routing is capable of harming millions of network devices (and also users) with much less effort than the well-known DoS or Ransomware attacks. The global routing protocol BGP-4, despite its fundamental significance, is not secure, because it is based on trust between the participants of global routing. In the absence of fast prospects for implementing a more secure global routing protocol, it is necessary to suggest approaches that could be applied at the scope of a large operator, industry, region, to mitigate the possible losses from attacks on global routing. For this purpose, two general directions of counteraction are proposed: a) prevention of own prefixes hijacking; b) identification of hijacked routes and blocking outbound traffic to the compromised prefixes. The first direction is proposed to be described as the task of searching for the most effective topological organization of inter-node links, which can reduce losses from route hijacking within a certain target group of nodes.

KEYWORDS

global routing, route hijacking, link optimization, cyber security.

REFERENCES

  1. Rekhter, , Li, T. and Hares, S. (2006), A border gateway protocol 4 (BGP-4), avalable at: https://tools.ietf.org/html/rfc4271 (accessed June 09, 2018).
  2. Symantec (2018), Internet security threat report 2018, available at: symantec.com/security-center/threat-report (accessed May 10, 2018).
  3. Global ransomware damages predicted to exceed $5 billion in 2017, Cybercrime Magazine, avalable at: https://cybersecurityventures.com/ransomware-damage-report-2017-5-billion/ (accessed May 10, 2018).
  4. The Next Web (2017), Google made a tiny error and it broke half the internet in Japan, avalable at: https://thenextweb.com/google/2017/08/28/google-japan-internet-blackout/ (accessed 28, 2018).
  5. Goodin, (2017), Russian-controlled telecom hijacks financial services’ Internet traffic, avalable at: https://arstechnica.com/information-technology/2017/04/russian-controlled- telecom-hijacks-financial-services-internet-traffic/ (accessed Dec. 1, 2017).
  6. Apostolaki, , Zohar, A. and Vanbever, L. (2017), Hijacking bitcoin: Routing attacks on cryptocurrencies”, available at: https://btc-hijack.ethz.ch/files/btc_hijack.pdf (accessed Apr. 28, 2018).
  7. MERIT, List of routing registries, available at: http://www.irr.net/docs/list.html (accessed 28, 2018).
  8. RIPE NCC, BGP origin validation, available at: https://www.ripe.net/manage-ips-and-asns/ resource-management/certification/bgp-origin-validation (accessed 28, 2018).
  9. Zubok, (2017), “Use of DNSSEC technology for protection of domain names in the Ukrainian segment of Internet”, Information Technology and Security, Institute of Special Communication and Information Protection, Vol. 5, Iss. 2, pp. 43-50.
  10. Zubok, V. (2012), “Practical aspects of modeling changes in the topology of the global computer network”, Reyestratsiya, zberigannya i obrobka danykh, Vol. 14, no. 2, pp. 67-78.

Full text: PDF