Electronic modeling

Vol 40, No 4 (2018)

https://doi.org/10.15407/emodel.40.04

CONTENTS

Mathematical Modeling and Computation Methods

  KRASILNIKOV A.I.
The Application of Mixtures of Shifted Distributions with Uniform Distribution of the Shift Value for Modeling Perforated Random Variables


3-18
  HUSEYNZADE S.O.
Restoration of Pressure at the Pool Boundary Based on the Solution of Inverse Problem

19-28

Computational Processes and Systems

  EFANOV D.V., SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V.
The Research of Two-modulus Codes with Summation of Unit Bits with Calculation by Modulo “Four”

29-54

Application of Modeling Methods and Facilities

  KUTSAN Yu.G., GURIEIEV V.O., LYSENKO Ye.M.
Modeling and Development of an Adap- tive Automated System for Creating the Emergency Training Scenarios


55-64
  VYNNYCHUK S.D., SHESTAKOV A.A., CHYRVA A.A.
Identification of Parameters of the Model of Thermal and Hydraulic Processes in the Crossflow Heat Exchanger, Based on the Analogy Between Thermal and Hydraulic Resistances


65-82
  TOROP V.M., SAPRYKINA G.Yu, VOROBIOV Yu.S.
Development of Mathematical Models of a Working Blade of a Steam Turbine K-1000-60/3000 with the Aim of Predicting Residual Life


83-94
  PLESKACH B.M.
Application of the Method for Modeling Precedents for Monitoring the Energy State of Technological Equipment

95-106

Short Notes

  MOKHOR V.V., HONCHAR S.F.
The Idea of the Construction of the Algebra of Risks on the Basis of the Theory of Complex Numbers

107-112

THE APPLICATION OF MIXTURES OF SHIFTED DISTRIBUTIONS WITH UNIFORM DISTRIBUTION OF THE SHIFT VALUE FOR MODELING PERFORATED RANDOM VARIABLES

A.I. Krasilnikov Cand. Sc. (Phys.-Math.)
Institute of Technical Thermal Physics, 2a Zhelyabov St, Kyiv, 03057, Ukraine,
e-mail: tangorov@ukr. net)

Èlektron. model. 2018, 40(4):03-18
https://doi.org/10.15407/emodel.40.04.003

ABSTRACT

The properties of mixtures of shifted distributions with a uniform distribution of the shift value have been analyzed. It is shown that the probability density of the mixture is continuous and unimodal. The properties of cumulant coefficients of mixtures of shifted distributions have been investigated. The models of perforated random variables based on a mixture of shifted Gaussian and logistic distributions have been constructed.

KEYWORDS

cumulant coefficients, moment-cumulant models, cumulant analysis, perforated distributions, mixtures of distributions.

REFERENCES

  1. Malakhov, N. (1978), Kumuliantnyi analiz sluchainykh negaussovykh protsessov i ikh preobrazovanii [Cumulant analysis of random non-Gaussian processes and their transforma- tions], Sovetskoe radio, Moscow, USSR.
  2. Kunchenko, P. (2001), Polinomialnye otsenki parametrov blizkikh k gaussovskim sluchai- nykh velichin. Ch. I. Stokhasticheskie polinomy, ikh svoistva i primeneniya dlia nakhozhdeniia otsenok parametrov [Polynomial estimations of parameters of random variables close to Gaussians. Part I. Stochastic polynomials, their properties and application for finding Pa- rameter Estimations], ChITI, Cherkassy, Ukraine.
  3. Alexandrou, , De Moustier, C. and Haralabus, G. (1992), Evaluation and verification of bottom acoustic reverberation statistics predicted by the point scattering model, J. Acoust. Soc. Am., Vol. 91, no. 3, pp. 1403-1413. https://doi.org/10.1121/1.402471
  4. Kuznetsov, V. (2009), “Use of the moments of the third order in calculations of electric loadings”, Vestnik Samarskogo GTU. Seriia Tekhnicheskie nauki, no. 2 (24), pp. 166-171.
  5. Wang, and Chen, P. (2009), “Fault Diagnosis Method Based on Kurtosis Wave and Infor- mation Divergence for Rolling Element Bearings”, WSEAS Transactions on Systems, Vol. 8, Iss. 10, pp. 1155-1165.
  6. Kuznetsov, F., Borodkin, D.K. and Lebedeva, L.V. (2013), “Cumulant models of addi- tional errors”, Sovremennye tekhnologii. Sistemnyi analiz.  Modelirovanie,  no.  1  (37), pp. 134-138.
  7. Harmash, O.V. and Krasilnikov, A.I. (2017), “Cumulant methods for detecting acoustic emis- sion signals”, Scientific Proceedings of STUME, Vol. ÕXV, no. 1 (216), pp. 109-113.
  8. Vadzinskii, R.N. (2001), Spravochnik po veroiatnostnym raspredeleniiam [Reference Book on Probabilistic Distributions], Nauka, St. Petersburg, Russia.
  9. Beregun, S. and Krasilnikov, A.I. (2017), “Research of excess kurtosis sensitiveness of diagnostic signals for control of the condition of the electrotechnical equipment”, Tekh- nichna elektrodynamika, no. 4, pp. 79-85. https://doi.org/10.15407/techned2017.04.079
  10. Kunchenko, P., Zabolotnii, S.V., Koval, V.V. and Chepynoha, A.V. (2005), “Simulation of excess random variables with a given cumulative description on the basis of the bigaussian distribution”, Visnyk ChDTU, no. 1, pp. 38-42.
  11. Zabolotnii, V. and Chepynoha, A.V. (2008), “Tetragaussian symmetrically distributed probabilistic models on the basis of a moment description”, Zbirnyk naukovykh prats IPME im. G.Ye. Pukhova, NAN Ukrainy, no. 47, pp. 92-99.
  12. Chepynoha, V. (2010), “Areas of realization of bigauss models of asymmetric-excess ran- dom variables with a perforated moment-cumulant description”, Visnyk ChDTU, no. 2, pp. 91-95.
  13. Krasilnikov, I. (2013), “Class of non-Gaussian distributions with zero skewness and kurtosis”, Radioelectronics and Communications Systems, Vol. 56, no. 6, pp. 312-320. https://doi.org/10.3103/S0735272713060071
  14. Krasilnikov, I. (2017), “Class of non-Gaussian symmetric distributions with zero coef- ficient of kurtosis”, Elektronnoe modelirovanie, Vol. 39, no. 1, pp. 3-17.
  15. Krasilnikov, I. (2016), “Models of asymmetrical distributions of random variables with zero asymmetry coefficient”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 19-33.
  16. Krasilnikov, I. (2018), “Modeling of perforated random variables on the basis of a mixture of shifted distributions”, Elektronnoe modelirovanie, Vol. 40, no. 1, pp 47-61. https://doi.org/10.15407/emodel.40.01.047
  17. Kendall, and Stuart, A. (1966), Teoriia raspredelenii [Distribution Theory], Translated by Sazonov, V.V., Shiriaev, A.N., Ed by Kolmogorov, A.N., Nauka, Moscow, USSR.
  18. Blazquez, , Garcia-Berrocal, A., Montalvo, C. and Balbas, M. (2008), The coverage factor in a Flatten-Gaussian distribution, Metrologia, Vol. 45, no. 5, pp. 503-506. https://doi.org/10.1088/0026-1394/45/5/002
  19. Dorozhovets, M. and Popovych, I.V. (2015), “Processing of observation results with a distribution representing the convolution of normal and uniform distributions by the method of ordinal statistics”, Ukrainskyi metrolohichnyi zhurnal, no. 2, pp. 3-11.

Full text: PDF

RESTORATION OF PRESSURE AT THE POOL BOUNDARY BASED ON THE SOLUTION OF INVERSE PROBLEM

S.O. Huseynzade, Cand. Sc. (Phys.-Math.)
Azerbaijan State \University of Oil and Industry
20 Azadlyg Ave., Baku, AZ 1010, Azerbaijan
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(4):19-28
https://doi.org/10.15407/emodel.40.04.019

ABSTRACT

A numerical method has been proposed to solve the inverse problem of determining conditions on the outer pool boundary based on information obtained from the hole. The rectilinear-parallel flow of a single-phase fluid in a rectangular pool described by a linear parabolic equation is considered. The initial state of the pool, as well as the pressure and flow rate of liquid in the gallery of production wells are considered to be set, and the pressure on the outer boundary of the pool is unknown. This problem belongs to the class of boundary inverse problems. First, the nonlocal perturbation method of the boundary condition is applied. After that, the problem is discretized and a special representation is proposed to solve the resulting system of difference equations. As a re- sult, the problem is reduced to two difference problems and one linear equation with respect to the approximate value of pressure at the boundary of the pool. On the basis of the proposed computational algorithm, numerical calculations for model problems are carried out.

KEYWORDS

oil pool, rectilinear-parallel flow, boundary inverse problem, nonlocal perturba- tion method, difference method.

REFERENCES

  1. Alifanov, O.M., Artyukhin, E.A. and Rumyantsev, S.V. (1988), Ekstremalnyie metody resheniya nekorrektnykh zadach [Extreme methods for solution of incorrect problems], Nauka, Moscow, Russia.
  2. Basniev, S., Dmitriev, N.M. and Rosenberg, G.D. (2005), Neftegazovaya gidromekhanika [Oil and gas hydromechanics], Izhevsky institut kompyuternykh issledovaniy, Moscow, Russia.
  3. Kanevskaya, D. (2002), Matematicheskoe modelirovanie gidrodinamicheskikh protsessov razrabotki mestorozhdeniy uglevodorodov [Mathematical modeling of hydrodynamic pro- cesses in hydrocarbon field development], Izhevsky institut kompyuternykh issledovaniy, Moscow, Russia.
  4. Aziz, and E. Settari, E. (2004), Matematicheskoe modelirovanie plastovykh system [Mathematical modeling of reservoir systems], Izhevsky institut kompyuternykh issle- dovaniy, Moscow, Russia.
  5. Alifanov, M. (1988), Obratnyie zadachi teploobmena [Inverse heat transfer problems], Mashinostroenie, Moscow, USSR. Vestnik  Yugorskogo Universiteta, Vol. 46, Iss. 3, pp. 51-59.
  6. Kerimov, N.B. and Ismailov, M.I. (2012), An inverse coefficient problem for the heat equa- tion in the case of nonlocal boundary conditions, J. of Mathematical Analysis and Applica- tions, Vol. 396, no. 2, pp. 546-554. https://doi.org/10.1016/j.jmaa.2012.06.046
  7. Tikhonov N. and Arsenin, V.Ya. (1986), Metody resheniya nekorrektnykh zadach [Meth- ods for solution of incorrect problems], Nauka, Moscow, Russia.
  8. Kabanikhin, I. (2009), Obratnyie i nekorrektnyie zadachi [Inverse and incorrect prob- lems], Sibirskoe nauchnoye izdatelstvo, Novosibirsk, Russia.
  9. Samarskiy, A. and Vabischevich, P.N. (2009), Chislennyie metody resheniya obratnykh zadach matematicheskoi fiziki [Numerical methods for solution of inverse problems of mathe- matical physics], Izdatelstvo LKI, Moscow, Russia.
  10. Yaparova, M. (2013), “Numerical modeling of solutions of the inverse boundary value problem of heat conductivity”, Vestnik YuUrGU. Seriya Matematicheskoye modelirovanie i programmirovanie, Vol. 6, Iss. 3, pp. 112-124.
  11. Sabitov, B. (2016), Pryamye i obratnye zadachi dlya uravneniy smeshannogo parabolo- giperbolicheskogo tipa [Direct and inverse problems for the equations of mixed parabolic- hyperbolic type], Nauka, Moscow, Russia.
  12. Korotky, I. and Starodubtseva, Yu.V. (2015), Modelirovanie pryamykh i obratnykh gra- nichnykh zadach dlya statsionarnykh modelei teplomassoperenosa [Simulation of direct and inverse boundary value problems for stationary models of heat and mass transfer], Izda- telstvo Uralskogo Universiteta, Ekaterinburg, Russia.
  13. Verzhbitsky, A. (2017), “Inverse problems on the definition of boundary regimes”,

Full text: PDF

THE RESEARCH OF TWO-MODULUS CODES WITH SUMMATION OF UNIT BITS WITH CALCULATION BY MODULO “FOUR”

D.V. Efanov, Cand. Sc. (Eng.)
Russion Transport University (MITE), 9 Obraztsov St, Moscow, 127994, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. Sapozhnikov, Dr Sc. (Eng.),  Vl. V. Sapozhnikov,  Dr Sc. (Eng.),, V.A. Schagina
Emperor Alexander I St.Petersburg State Transport University, 9 Moskovsky Ave, Saint Petersburg, 190031, Russian Federation, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2018, 40(4):29-54
https://doi.org/10.15407/emodel.40.04.029

ABSTRACT

The methods of codes with summation of unit bits construction are analyzed. In addition to the classical sum code (Berger code), there is a family of modified codes, which are built through the allocation of controlled subsets of data vector’s bits. The connection between the methods of the classical Berger code modification is determined and new two-module codes with summation of unit data bits are proposed. The methods of two-module sum codes construction are also analyzed; their features and characteristics are described. The general block diagram of two-module sum code generators is presented.

KEYWORDS

technical diagnostics, sum code, modified Berger code, two-module sum code, undetectable error.

REFERENCES

  1. Sapozhnikov, V., Sapozhnikov, Vl.V., Khristov, H.A. and Gavzov, D.V. (1995), Metody postroeniya bezopasnyh mikroehlektronnyh sistem zheleznodorozhnoi avtomatiki [Methods for constructing safety microelectronic systems for railway automation], Ed. Vl.V. Sapozh- nikov, Transport, Moscow, Russia.
  2. Pradhan, K. (1996), Fault-tolerant computer system design, Prentice Hall, New York, USA.
  3. Fujiwara, E. (2006), Code design for dependable systems: Theory and practical applications, John Wiley & Sons, New Jersey, USA. https://doi.org/10.1002/0471792748
  4. Göessel, , Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New methods of con- current checking, Edition 1, Springer Science+Business Media B.V., Dodrecht, Netherlands.
  5. Ubar, , Raik, J. and Vierhaus, H.-T. (2011), Design and test technology for dependable systems-on-chip (Premier Reference Source), Information Science Reference, IGI Global, Hershey-New York, USA.
  6. Lisenkov, M., Bestemyanov, P.F., Leushin, V.B., et al. (2009), Sistemy upravleniya dvizheniem poezdov na peregonakhUchebnik dlya VUZov Zh.-d. Transporta, Chast. 2, 3 [Traffic control systems on the trains: Manual for Inst. of Railway Transport, part 2, 3], Ed. 

    V.M. Lisenkov, Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte, Moscow, Russia. 

    Problemy upravleniya,  no. 2, pp. 48-56. [Self-checking discrete devices], Energoatomizdat, St. Petersburg, Russia.
  7. Tshagharyan, , Harutyunyan, G., Shoukourian, S. and Zorian, Y. (2017), Experimental study on Hamming and Hsiao codes in the context of embedded applications, Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, Sept. 29-Oct. 2, 2017, pp. 25-28. DOI: 10.1109/EWDTS.2017.8110065. https://doi.org/10.1109/EWDTS.2017.8110065
  8. Parkhomenko, P. and Sogomonyan, E.S. (1981), Osnovy tekhnicheskoi diagnostiki (opti- mizatsiya algoritmov diagnostirovaniya, apparaturnyie sredstva) [Basics of technical diag- nostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow, USSR.
  9. McCluskey, J. (1986), Logic design principles: With emphasis on testable semicustom cir- cuits, Prentice Hall PTR, New Jersey, USA.
  10. Sogomonyan, S. and Slabakov, E.V. (1989), Samoproveryaemye ustroistva i otkazous- toichivye sistemy [Self-checking devices and failover systems], Radio i svyaz, Moscow, USSR.
  11. Nicolaidis, and Zorian, Y. (1998), On-Line Testing for VLSI – À Compendium of Ap- proaches, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20. DOI: 10.1023/A:1008244815697. https://doi.org/10.1023/A:1008244815697
  12. Matrosova, Yu., Levin, I. and Ostanin, S.A. (2000), Self-checking synchronous FSM net- work design with low overhead, VLSI Design, Vol. 11, Iss. 1, pp. 47-58. DOI: 10.1155/ 2000/46578.
  13. Mitra, and McCluskey, E.J. (2000), Which concurrent error detection scheme to choose?, Proceedings of International Test Conference, USA, Atlantic City, NJ, October 03-05, 2000, pp. 985-994. DOI: 10.1109/TEST.2000.894311. https://doi.org/10.1109/TEST.2000.894311
  14. Kubalik, and Kubatova, H. (2005), Parity codes used for on-line testing in FPGA, Acta Polytechnika, Vol. 45, no. 6, pp. 53-59.
  15. Drozd, V., Kharchenko, V.S., Antoschuk, S.G., et al. (2012), Rabochee diagnostirovanie bezopasnykh informatsionno-upravlyayuschikh sistem [On-line testing for safe instrumenta- tion and control systems], Natsionalny Aerokosmicheskiy Universitet «KhAI», Kharkov, Ukraine.
  16. Kharchenko, , Kondratenko, Yu. and Kacprzyk, J. (2017), Green IT engineering: Con- cepts, models, complex systems architectures, Springer Book Series Studies in Systems, De- cision and Control, Vol. 74. DOI 10.1007/978-3-319-44162-7.
  17. Hamming, W. (1986), Coding and information theory: 2 Sub-edition, Prentice-Hall, New York, USA.
  18. Lala, K. (2007), Principles of modern digital design, John Wiley & Sons, New Jersey, USA. https://doi.org/10.1002/0470125217
  19. Drozd, V. (2008), “Untraditional view on operational diagnostics of computing devices”
  20. Sapozhnikov, V., and Sapozhnikov, Vl.V. (1992), Samoproveryaemye diskretnye ustroistva 

    Theory and Applications, Vol. 12, Iss. 1-2, pp. 41-53. DOI: 10.1023/A:1008257118423. https://doi.org/10.1023/A:1008257118423

  21. Piestrak, J. (1995), Design of self-testing checkers for unidirectional error detecting codes, Oficyna Wydawnicza Politechniki Wroclavskiej, Wrolcaw, Poland.
  22. Efanov, , Sapozhnikov, V. and Sapozhnikov, Vl. (2017), Generalized algorithm of build- ing summation codes for the tasks of technical diagnostics of discrete systems, Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, Sept. 29-Oct. 2, 2017, pp. 365-371. DOI: 10.1109/EWDTS.2017.8110126. https://doi.org/10.1109/EWDTS.2017.8110126
  23. Berger, J.M. (1961), A note on error detection codes for asymmetric channels, Information and Control, 4, Iss. 1, pp. 68-73. DOI: 10.1016/S0019-9958(61)80037-5. https://doi.org/10.1016/S0019-9958(61)80037-5
  24. Efanov, V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2010), “On sum code properties in concurrent error detection systems”, Avtomatika i telemekhanika, no. 6, pp. 155-162.
  25. Sapozhnikov, V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Errors classification in information vectors of systematic codes”, Izvestiya Vysshikh Uchebnykh ZavedeniyPribo- rostroenie, Vol. 58, no. 5, pp. 333-343. DOI 10.17586/0021-3454-2015-58-5-333-343. https://doi.org/10.17586/0021-3454-2015-58-5-333-343
  26. Morosow, , Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Göessel, M. (1998), Self-check- ing combinational circuits with unidirectionally independent outputs, VLSI Design, Vol. 5, Iss. 4, pp. 333-345. DOI: 10.1155/1998/20389. https://doi.org/10.1155/1998/20389
  27. Saposhnikov, V., Morosov, A., Saposhnikov, Vl.V. and Göessel M. (1998), A new design method for self-checking unidirectional combinational circuits, Journal of Electronic Testing:
  28. Ostanin, (2017), Self-checking synchronous FSM network design for path delay faults, Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, Sept. 29-Oct. 2, 2017, pp. 696-699. DOI: 10.1109/EWDTS.2017.8110129. https://doi.org/10.1109/EWDTS.2017.8110129
  29. Efanov, V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2017), “Conditions for detecting a logical element fault in a combination device under concurrent checking based on Berger`s code”, Avtomatika i telemekhanika, no. 5, pp. 152-165. https://doi.org/10.1134/S0005117917050113
  30. Blyudov, , Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2012), Properties of code with summation for logical circuit test organization, Proceedings of the 10th IEEE East- West Design & Test Symposium (EWDTS`2012), Kharkov, Ukraine, September 14-17, 2012, pp. 114-117. DOI: 10.1109/EWDTS.2013.6673150. https://doi.org/10.1109/EWDTS.2013.6673150
  31. Blyudov, A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “Forma- tion of the Berger modified code with the minimum number of undetectable errors of data bits”, Electronnoe modelirovanie, Vol. 34, no. 6, pp. 17-29. 
  32. Efanov, , Sapozhnikov, V., Sapozhnikov, Vl. and Blyudov, A. (2013), On the problem of selection of code with summation for combinational circuit test organization, Proceedings of the 11th IEEE East-West Design & Test Symposium (EWDTS`2013), Rostov-on-Don, Rus- sia, September 27-30, 2013, pp. 261-266. DOI: 10.1109/EWDTS.2013.6673133. https://doi.org/10.1109/EWDTS.2013.6673133
  33. Blyudov, A., Efanov, D.V. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2014), “On codes with summation of data bits in concurrent error detection systems”, Avtomatika i tele- mekhanika, no. 8, pp. 113-145. https://doi.org/10.1134/S0005117914080098
  34. Sapozhnikov, V., Sapozhnikov, Vl.V. and Efanov, D.V. (2017), “Effective method of modifying code with on-bits summation”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Pribo- rostroenie, Vol. 60, no. 11, pp. 1020-1032. DOI: 10.17586/0021-3454-2017-60-11-1020-1032. https://doi.org/10.17586/0021-3454-2017-60-11-1020-1032
  35. Efanov, , Sapozhnikov, V. and Sapozhnikov, Vl. (2016), Generic two-modulus sum codes for technical diagnostics of discrete systems problems, Proceedings of the 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, Armenia, October 14-17, 2016, pp. 256-260. DOI: 10.1109/EWDTS.2016.7807713. https://doi.org/10.1109/EWDTS.2016.7807713
  36. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. and Schagina, V. (2017), The analysis of two-modulus codes detection ability with summation of unit data bits compared to classical and modified Berger codes, Proceedings of the 15th IEEE East-West Design & Test Sympo- sium (EWDTS`2017), Novi Sad, Serbia, Sept. 29-Oct. 2, 2017, pp. 141-148. DOI: 10.1109/ EWDTS.2017.8110134. Izvestiya Vysshikh Uchebnykh Zavedeniy. Physics, Vol. 59, no. 8/2, pp. 33-36.
  37. Efanov, V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2018), Two-modulus codes with summation of one-data bits for technical diagnostics of discrete systems, Automatic Control and Computer Sciences, Vol. 52, Iss. 1, pp. 1-12. DOI: 10.3103/S0146411618010029. https://doi.org/10.3103/S0146411618010029
  38. Das, and Touba, N.A. (1999), Synthesis of circuits with low-cost concurrent error detection based on Bose-Lin codes, Journal of Electronic Testing: Theory and Applications, Vol. 15, Iss. 1-2, pp. 145-155. DOI: 10.1023/A:1008344603814. https://doi.org/10.1023/A:1008344603814
  39. Efanov, V. (2016), “The method of weighted code with summation generator synthesis”,

Full text: PDF

MODELING AND DEVELOPMENT OF AN ADAPTIVE AUTOMATED SYSTEM FOR CREATING THE EMERGENCY TRAINING SCENARIOS

Yu.G. Kutsan 1, Dr Sc. (Eng.), V.O. Gurieiev, doctorant, Y.М. Lysenko, post-graduate
1 Pukhov Institute for Problems in Electrical Engineering, NAS of Ukraine, 15 General Naumov St, Kyiv, 03164, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(4):55-64
https://doi.org/10.15407/emodel.40.04.055

ABSTRACT

Composition and structure of subsystems of modeling remote simulators for training operational and dispatching personnel in power industry and theoretical problems of technology for making standard and emergency training scenarios have been considered. Main stages of constructing the scientific and methodical base of training with the help of trainers and remote simulators have been described. The methods for data integrity and visualization of modeling results for remote regime simulators have been proposed. The possibilities of using the constructors of scenarios of emergency trainings for raising the level of personnel skills in the distributed network of centers for personnel training have been determined.

KEYWORDS

operational simulators, operative changeover, emergency training scenarios, key competencies.

REFERENCES

  1. Avetisian, V., Gurieiev, V.O. and Sanginova, O.V. (2016), “Development and application of virtual hierarchical structures for modeling of modes, teaching and training of UES staff of Ukraine”, Visnyk Vinnytskogo politechnichnogo instytutu, Vol. 1(124), pp. 101-107.
  2. Gurieiev, V.O. and Sanginova, O.V. (2016), “Simulation and study of modes for full-scale mode simulator for Ukrainian energy systems”, Proceedings of the 2nd International Con- ference on Intellectual Energy and Power Systems (IEPS’2016), June 7-11, Kyiv, Ukraine, pp. 97-100. https://doi.org/10.1109/IEPS.2016.7521848
  3. Gurieiev, A. and Sanginova, O.V. (2017), “Construction of a training remote simulator for the training of personnel in the energy sector”, Zbirnyk naukovykh prats Instytutu elektodynamiky NAN Ukrainy, no. 48, pp. 52-58.
  4. Galaktionov, I. (1978), Osnovy inzhenerno-psikhologicheskogo proektirovaniya avtoma- tizirovannykh system upravleniya tekhnologicheskimi protsessami [Fundamentals of engi- neering and psychological design of automated process control systems], Nauka, Ìoscow, USSR.
  5. Chachko, G. (1986), Podgotovka operatorov energoblokov [Training of power unit opera- tors], Nauka, Ìoscow, USSR.
  6. Kron, (1972), Issledovanie slozhnykh sistem po chastyam (diakoptika) [Investigation of complex systems by parts (diacoptics)], Nauka, Moscow, USSR.
  7. Dozortsev, Ì., Agafonov, D.V., Nazin, V.A. et al. (2015), “Computing training of opera- tor: nontransient urgency, new potentialities, human factor”, Avtomatizatsiya v promyshlen- nosti, no. 7, pp. 8-20.
  8. Kluge, et al. (2009), Designing training for process control simulators: a review of empirical findings and current practices, Theoretical issues in ergonomics science, Vol. 10, no. 6, pp. 489-509. https://doi.org/10.1080/14639220902982192
  9. Donskoy, N. (1995), Computer-based simulators for operative personnel of TEP, Ener- getik, no. 5, pp. 28-34.
  10. The world market of computer simulators for operator training: trends, challenges, forecasts (PDF Download Available), available at: https://www.researchgate.net/publication/292960505_ Mirovoj_rynok_komputernyh_trenazerov_dla_obucenia_operatorov_tendencii_vyzovy_ prognozy.

Full text: PDF