Electronic modeling

Vol 40, No 3 (2018)

https://doi.org/10.15407/emodel.40.03

CONTENTS

Mathematical Modeling and Computation Methods

  SAUKH S.Ye.
Methodology and Methods of Mathematical Modeling of Energy Engineering in Market Conditions


3-32
  LISTROVOY S.V., LISTROVAYA E.S.
Substantiation of the Hypothesis on Four Colors

33-40

Informational Technologies

  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V.
Modular-Modified Weighted Summation Codes Detecting Any Errors of Odd Multiplicities

41-62

Application of Modeling Methods and Facilities

  KRAVTSOV H.A., KOSHEL V.I., DOLGORUKOV A.V., TSURKAN V.V.
Trainable Model of the Calculus over Classifications


63-76
  MAKARICHEV A.V., KUD A.A., SHCHUKIN A.B.
Distribution of the Sums of Maximums for the Service Time of Applications for the Period of Employment in the Processes of Auction Trading


77-86
  KHYLCHENKO T.V.
Modeling of the Work of a New Dual-Channel Capacitive Mems Gravimeter of Aviation Gravimetric System


87-118
  LYSENKOV E.A., BOHVAN S.I., KLEPKO V.V.
Structural Models for Describing X-Ray Scattering from Carbon Nanotubes

105-117

METHODOLOGY AND METHODS OF MATHEMATICAL MODELING OF ENERGY ENGINEERING IN MARKET CONDITIONS

S.Ye. Saukh, Dr Sc. (Eng.),
Pukhov Institute for Problems of Modeling in Energy Engineering, NAS of Ukraine (15 General Naumov St, Kyiv, 03164, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2018, 40(3):03-32
https://doi.org/10.15407/emodel.40.03.003

ABSTRACT

Peculiarities of development of energy engineering modeling systems under conditions of market mechanisms of energy complex management have been analyzed. The requirements on ensuring the adequacy of energy modeling systems in market conditions have been formulated. The generalized mathematical model of the competitive equilibrium on the electricity market has been presented in the form of a system of problems of mathematical programming with complementarity constraints. The search for the solution of such a system of problems we reduce to finding a solu tion of large scale mixed nonlinear complementary problem in the form of a Karush-Kuhn-Tucker system. A collection of original methods is presented for solving individual subtasks arising from the application of the quasi-Newtonian method for solving complementary problems of large dimension. The benefits of our solver (ICRS) created on the original methodology in comparison with the worldwide PATH solver are shown. A model of equilibrium states of the electricity market of Ukraine is presented in the form of a detailed description of the system of tasks of mathematical programming with complementarity constraints. The computational experiments show the application of the methodology for constructing adequate mathematical models of energy markets and propose methods for solving a system of problems of mathematical programming with complementarity constraints.

KEYWORDS

energy market, equilibrium state, modeling methodology, mathematical programming, complementary problem, solver of large-scale complementary problems, computational experiment.

REFERENCES

1. Jebaraja, S. and Iniyan, S. (2006), A review of energy models. Renewable and Sustainable Energy Reviews, Vol. 10, no. 4, pp. 281-311.
https://doi.org/10.1016/j.rser.2004.09.004
2. Connolly, D., Lund, H., Mathiesen, B.V. and Leahy, M. (2010), A review of computer tools for analyzing the integration of renewable into various energy systems, Applied Energy, Vol. 87, no. 4, pp. 1059-1082.
https://doi.org/10.1016/j.apenergy.2009.09.026
3. Amerighi, O., Ciorba, U. and Tommasino, M.C. (2010), Inventory and characterization of existing tools, D2.1 ATEsT Models Characterization Report, Italian National Agency for New Technologies, available at: http://www.cres.gr/atest/pdf/D_2_1_Models_Characterisation_Report.pdf.
4. Pina, A.A. (2012), Supply and demand dynamics in energy systems modeling. PhD Thesis. Universidade Tåcnica de Lisboa, available at: https://www.mitportugal.org/about/documents/curriculum-vitae/sustainable-energy-systems/968-thesis-andrepina/file.
5. Beeck, N. (1999), Classification of energy models. Tech. report FEW 777. Tilburg University & Eindhoven University of Technology, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.8055&rep=rep1&type=pdf.
6. Daniels, D. (2017), Overview of the national energy modeling system (NEMS). U.S. Energy Information Administration, 2017, available at: https://cepl.gatech.edu/sites/default/files/attachments/NEMS%20Overview_8-31-17FINAL_0.pdf.
7. PLEXOS® Integrated Energy Model, available at: http://utilitiesnetwork.energy-businessreview.com/suppliers/energy-exemplar/products/plexos-integrated-energy-model-ebr.
8. PRIMES MODEL 2013-2014. Detailed model description. E3MLab/ICCS at National Technical University of Athens, available at: https://ec.europa.eu/clima/sites/clima/files/strategies/analysis/models/docs/primes_model_2013-2014_en.pdf.
9. Parkkonen, O. (2016), Customer benefits of demand-side management in the Nordic electricity
market. PhD Thesis: Jyväskylä University School of Business and Economics, 2016,
available at: https://jyx.jyu.fi/dspace/handle/123456789/52033.
10. NEMSIM: the National Electricity Market simulator, available at: http://press-files.anu.edu.au/downloads/press/p96431/mobile/ch11s08.html.
11. Hogan, W.W. (1975), Energy policy models for project independence, Computers&Operations Research, no. 2, pp. 251-271.
https://doi.org/10.1016/0305-0548(75)90008-8
12. Gabriel, S.A., Kydes, A.S. and Whitman, P. (2001), The National Energy Modeling System:
A large-scale energy-economic equilibrium model, Operations Research, Vol. 49, no. 1, pp. 14-25.
https://doi.org/10.1287/opre.49.1.14.11195
13. Murphy, F.H., Susan, J.C., Shaw, S.H. and Sanders, R. (1988), Modeling and forecasting energymarketswith the intermediate future forecasting system, Operations Research, Vol. 36, no. 3, pp. 406-420.
https://doi.org/10.1287/opre.36.3.406
14. Integrating module of the National Energy Modeling System: Model documentation. U.S. Energy Information Administration. 2014, available at: https://www.eia.gov/outlooks/aeo/nems/documentation/integrating/pdf/m057(2014).pdf.
15. Overview of the Energy and Power Evaluation Program (ENPEP-BALANCE). Center for Energy, Environmental, and Economic Systems Analysis (CEEESA). Argonne National Laboratory, available at: https://ceeesa.es.anl.gov/pubs/61124.pdf.
16. Nesbitt, D. and Calvez, À. (2014), Network agent based modeling for EIA, available at: https://www.eia.gov/outlooks/documentation/workshops/pdf/day_2__2_dale_nesbitt_arrowheadeianetworkmodelingapproachassent.pdf .
17. Bernarda F. and Viellec, M. (2008), GEMINI-E3, a general equilibrium model of international-national interactions between economy, energy and the environment, Computational Management Science, Vol. 5, no. 3, pp. 173-206.
https://doi.org/10.1007/s10287-007-0047-y
18. PRIMES MODEL. Version 2 Energy System Model: Design and features. E3Mlab – ICCS. National Technical University of Athens, available at: http://www.e3mlab.ntua.gr/manuals/PRIMREFM.pdf.
19. Qi, T., Winchester, N., Zhang, D., Zhang, X. and Karplus, V.J. (2014), The China-in-Global Energy Model. Massachusetts Institute of Technology. MA, USA. Tsinghua University. Beijing, China 2014, available at: https://dspace.mit.edu/bitstream/handle/1721.1/88606/MITJPSPGC_Rpt262.pdf?sequence=1.
20. Dirkse, S., Ferris, M.C. and Munson, T. The PATH solver. University of Wisconsin, USA, available at: http://pages.cs.wisc.edu/~ferris/path.html.
21. Dirkse, S.P. and Ferris, M.C. (1995), The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems, Optimization Methods and Software, no. 5, pp. 123-156.
https://doi.org/10.1080/10556789508805606
22. Dirkse, S.P. and Ferri, M.C. (1994), A pathsearch damped Newton method for computing general equilibria, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, USA, available at: http://pages.cs.wisc.edu/~ferris/techreports/94-03.pdf.
23. Billups, S.C., Dirkse, S.P. and Ferris, M.C. (1997), A comparison of large scale mixed complementarity problem solvers, Computational Optimization and Applications, Vol. 7, pp. 3-25.
https://doi.org/10.1023/A:1008632215341
24. Hobbs, B.F. (2001), Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets, IEEE Transactions on Power Systems, Vol. 16, no. 2, pp. 194-202.
https://doi.org/10.1109/59.918286
25. Murphy, F. and Smeers, Y. (2007), On the impact of forward markets on investments in oligopolistic markets with reference to electricity. Part 2, Uncertain demand. Harvard Electricity Policy Group Research Paper, available at: http://www.hks.harvard.edu/ hepg/Papers/Murphy_and_Smeers_June_18_07.pdf.
26. Pineau, P.-O. (2000), Electricity market reforms: Industrial developments, investment dynamics and game modeling. Ph.D Thesis. Montreal, 2000, available at: http://www.irec.net/upload/File/memoires_et_theses/260.pdf.
27. Murphy, F. and Smeers, Y. (2005), Generation capacity expansion in imperfectly competitive restructured electricity markets, Operations Research, Vol. 53, no. 4, pp. 646-661.
https://doi.org/10.1287/opre.1050.0211
28. Hobbs, B. and Helman, U. (2004), Complementarity-based equilibrium modeling for electric power markets. Modeling prices in competitive electricity markets, Series in Financial Economics, Wiley, Chichester, UK.
29. Borisenko, A.V. and Saukh, S.Ye. (2008), “Modeling of equilibrium state of electric power systems in market conditions”, Modelirovanie – 2008, Materialy mezhdunarodnoi konferentsii [Simulation-2008, Proceedings of International Conference], Kyiv, May 14-16, 2008, pp. 172-177.
30. Borisenko, A.V. and Saukh, S.Ye. (2009), “Model of market equilibrium in the electric power sector of Ukraine”, Novyny energetyky, no. 5, pp.29-44.
31. Borisenko, A.V. and Saukh, S.Ye. (2009), “Equilibrium model for the introduction of generating capacities in conditions of imperfect competition”, Novyny energetyky, no. 11, pp. 36-39; no. 12, pp. 23-39.
32. Borisenko, A.V. and Saukh, S.Ye. (2010), “Model of functioning and development of generating capacities in market conditions”, Pratsi Institutu Electrodynamiky NAN Ukrainy, Iss. 25, pp. 21-32.
33. Saukh, S.Ye. and Borysenko, A.V. (2010), Equilibrium model of Ukrainian generating capacities operation and development under market conditions, Joint Symposium Proceedings of the conferences “Energy of Russia in XXI century: development strategy” and “Eastern vector and Asian energy cooperation: what is after the crisis?”, Irkutsk: Melentiev Energy Systems Institute, SB RAS, 2010. http://isem.irk.ru/symp2010/en/papers/ENG/S3-12e.pdf.
34. Saukh, S.Ye. (2013), “Methods of computer simulation of competitive equilibrium in electricity markets”, Elektronnoe modelirovanie, Vol. 35, no. 5, pp. 11-26.
35. Energy Research Centre of the Netherlands. COMPETES input data, available at: http://www.ecn.nl/fileadmin/ecn/units/bs/COMPETES/cost-functions.xls http://www.ecn.nl/fileadmin/ecn/units/bs/COMPETES/flowgate-information.xls.
36. Saukh, S.Ye. (2015), “Method of correction of special elements in Clarke’s generalized Jacobian to ensure numerical stability of the quasi-Newton methods for solution of variational inequalities problems” Elektronnoe modelirovanie, Vol. 37, no. 4, pp. 3-18.
37. Saukh, S.Ye. (2015), “Application of incomplete column-row factorization of matrices in quasi-Newton methods for solving large-scale variational inequalities problems”, Elektronnoe modelirovanie, Vol. 37, no. 5, pp. 3-15.
38. Fischer, A. (1992), A special Newton-type optimization method, Optimization. Vol. 24, no. 3-4, pp. 269-284.
https://doi.org/10.1080/02331939208843795
39. Facchinei, F. and Pang, J.-S. (2003), Finite-dimensional variational inequalities and complementarity problems. Vol. I, Springer Int.
40. Facchinei, F. and Pang, J.-S. (2003), Finite-dimensional variational inequalities and complementarity problems. Vol. II. Springer Int.
41. Saukh, S.Ye. (2007), “CR-factorization method for large dimensional matrices”, Elektronnoe modelirovanie, Vol. 29, no. 6, pp. 3-22.
42. Saukh, S.Ye. (2010), “Incomplete column-row factorization of matrices for solving of largescale system of equations”, Elektronnoe modelirovanie, Vol. 32, no. 6, pp. 3-14.
43. Anderson, S.C. (2004), Analyzing strategic interaction in multi-settlement electricity markets: A closed-loop supply function equilibrium model, available at: https://www.hks.harvard.edu/crump/papers/Anderson_thesis.pdf.
44. Saukh, S.Ye., Borisenko, A.V. and Dzhyigun, E.N. (2014), “Model of the network of high-voltage transmission lines in the tasks of planning of the development of power systems”, Elektronnoe modelirovanie, Vol. 36, no. 4, pp. 3-14.
45. Wei, J.-Y. and Smeers, Y. (1999), Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices, Operations Research, Vol. 47, no. 1, pp. 102-112.
https://doi.org/10.1287/opre.47.1.102
46. Saukh, S.Ye. and Borisenko, A.V. (2016), “Modeling of competitive equilibrium at the electricity market with regard for energy losses in electric networks”, Problemy zagalnoi energetyky, Vol. 46, no. 3, pp. 5-11, available at: https://doi.org/10.15407/pge2016.03.005.
https://doi.org/10.15407/pge2016.03.005
47. Saukh, S.Ye. (2017), “Mathematical model of the equilibrium state of the new competitive electricity market of Ukraine”, Elektronnoe modelirovanie, Vol. 39, no. 6, pp. 3-14.
48. Saukh, S.Ye. (2018), “Mathematical modeling of competitive equilibrium in electricity markets”, Visnyk NAN Ukrainy, no. 4, pp. 53-67, available at:https://doi.org/10.15407/visn2018.04.053.
https://doi.org/10.15407/visn2018.04.053

Full text: PDF

SUBSTANTIATION OF THE HYPOTHESIS ON FOUR COLORS

S.V. Listrovoy, Dr Sc. (Eng.),
Ukrainian State University of Railway Transport, 7 Feuerbach Sq., Kharkov, 61050, Ukraine Е-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.,
E.S. Listrovaya, Cand. Sc. (Eng.)
Zhukovsky National Aerospace University, 17 Chkalov St, Kharkov, 61070, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(3):33-40
https://doi.org/10.15407/emodel.40.03.033

ABSTRACT

The paper provides a substantiation of the machine proof of the hypothesis of four colors conducted by a group of mathematicians headed by K. Appel and V. Heiken [1].

KEYWORDS

chromatic number, triangulation, graph density

REFERENCES

1. Appel, K. and Haken, W. (1989), Every planar map four colorable contemporary mathematics, (R. I.): Amer. Math. Soc., Vol. 89.
https://doi.org/10.1090/conm/098
2. Berge, K. (1962), Teoriya grafov i yeyo primenenie [The theory of graphs and its application], IL, Moscow, USSR.
3. Heesch, H. (1969), Untersuchungen zum Vierfarbenproblem, Hochschilskriptum 810/a/b/Bibliographisches Institut, Mannheim.
4. Harari, F. (1973), Teoriya grafov, 2oe izd. [Theory of graphs, 2nd ed.], Mir, Moscow, USSR.
5. Emelichev, V.B., Melnikov, O.I., Sarvanov, V.I. and Tyshkevich, R.I. (1990), Lektsii po teorii grafov [Lectures on graph theory], Nauka, Moscow, USSR.

Full text: PDF

MODULAR-MODIFIED WEIGHTED SUMMATION CODES DETECTING ANY ERRORS OF ODD MULTIPLICITIES

V.V. Sapozhnikov, Dr Sc. (Eng.), Vl.V. Sapozhnikov, Dr Sc. (Eng.), D.V. Efanov, Cand. Sc. (Eng.),
Emperor Alexande I St.Petersburg State Transport University, 9 Moskovsky Ave, Saint Petersburg, 190031, Russian Federation, e-mail:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(3):41-62
https://doi.org/10.15407/emodel.40.03.041

ABSTRACT

The problem has been considered of constructing a class of codes with summation with the smallest total number of undetectable errors in data vectors for a given numbers of data and check bits. An algorithm is proposed for constructing modified modular codes with summation of weighted data bits with a sequence of weight coefficients that forms a natural series of numbers. Properties of a new class of codes are analyzed in comparison with known modular codes with summation of single indicators of digits. A classification and a detailed comparative analysis of modular codes with summation possessing the property of identifying any errors with odd multiplicities are given. The advantages and disadvantages of the new modified modular weighted codes with summation are shown.

KEYWORDS

technical diagnostics of discrete systems, summation code, Berger’s code, modular summation code, undetectable error, weighted summation codes, modified weighted summation code

REFERENCES

1. Aksjonova, G.P. (2008), “On functional diagnosis of discrete devices under imperfect data processing conditions, Problemy upravleniya, no. 5, pp. 62-66.
2. Ubar, R., Raik, J. and Vierhaus, H.-T. (2011), “Design and test technology for dependable systems-on-chip (Premier Reference Source)”, Information Science Reference, IGI Global, Hershey – New York, USA.
3. Mosin, S. (2012), “Methodology to design-for-testability automation for mixed-signal integrated circuits organization”, Proceedings of the 10th IEEE East-West Design & Test Symposium (EWDTS`2012), Kharkov, Ukraine, September 14-17, 2012, pp. 178-183.
4. Drozd, A., Drozd, J., Antoshchuk, S., et al. (2016), “Objects and methods of on-line testing: Main requirements and perspectives of development”, Proceedings of the 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, Armenia, October 14-17, 2016, pp. 72-76.
https://doi.org/10.1109/EWDTS.2016.7807750
5. Hahanov, V., Litvinova, E., Gharibi, W., et al. (2017), “Quantum memory-driven computing for test synthesis”, Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29-October 2, 2017, pp. 63-68. DOI: 10.1109/EWDTS.2017.8110147.
https://doi.org/10.1109/EWDTS.2017.8110147
6. Tshagharyan, G., Harutyunyan, G., Shoukourian, S. and Zorian, Y. (2017), “Experimental study on Hamming and Hsiao codes in the context of embedded applications”, Ibid, Novi Sad, Serbia, September 29-October 2, 2017, pp. 25-28. DOI: 10.1109/EWDTS.2017.8110065.
https://doi.org/10.1109/EWDTS.2017.8110065
7. Borecky J., Kohlik M., Kubatova, H. (2017), “Parity driven reconfigurable duplex system”, Microprocessors and Microsystems, Vol. 52, pp. 251-260, DOI: 10.1016/j.micpro.2017. 06.015.
8. Piestrak, S.J. (1995), Design of self-testing checkers for unidirectional error detecting codes, Oficyna Wydawnicza Politechniki Wroclavskiej, Wroclaw, Poland.
9. Zeng, C. and McCluskey, E.J. (1999), “Finite state machine synthesis with concurrent error detection”, Proceedings of International Test Conference, Atlantic City, NJ, 1999, pp. 672-679, DOI: 10.1109/TEST.1999.805795.
https://doi.org/10.1109/TEST.1999.805795
10. Jha, N.K. and Gupta, S. (2003), Testing of digital systems, Cambridge University Press, Cambridge, UK.
https://doi.org/10.1017/CBO9780511816321
11. Fujiwara, E. (2006), Code design for dependable systems: Theory and practical applications, John Wiley & Sons, New Jersey, USA.
https://doi.org/10.1002/0471792748
12. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New methods of concurrent checking: Edition 1, Springer Science+Business Media B.V., Dodrecht, Netherlands.
13. Dinesh Babu, N. and Ramani, G. (2014), “Checkbit prediction for logic functions by using Dong’s code method”, Intern. Journal of Science and Research (IJSR), Vol. 3, Iss. 11, pp. 946-949.
14. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Errors classification in information vectors of systematic codes”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333-343. DOI 10.17586/0021-3454-2015-58-5-333-343.
https://doi.org/10.17586/0021-3454-2015-58-5-333-343
15. Berger, J.M. (1961), “A note on error detecting codes for asymmetric channels”, Information and Control, Vol. 4, Iss. 1, pp. 68-73. DOI: 10.1016/S0019-9958(61)80037-5.
https://doi.org/10.1016/S0019-9958(61)80037-5
16. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Self-checking devices and failover systems], Radio & Svyaz, Moscow, USSR.
17. Touba, N.A. and McCluskey, E.J. (1997), “Logic synthesis of multilevel circuits with concurrent error detection”, IEEE Transaction on Computer-Aided Design of Integrated Circuits and System. Vol. 16, July, 1997, pp. 783-789.
https://doi.org/10.1109/43.644041
18. Nicolaidis, M. and Zorian, Y. (1998), “On-line testing for VLSI — a compendium of approaches”, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20. DOI:10.1023/A:1008244815697.
https://doi.org/10.1023/A:1008244815697
19. Mitra, S. and McCluskey, E.J. (2000), “Which concurrent error detection scheme to choose?”, Proceedings of International Test Conference, USA, Atlantic City, NJ, October 03-05, 2000, pp. 985-994. DOI: 10.1109/TEST.2000.894311.
https://doi.org/10.1109/TEST.2000.894311
20. Ostanin, S. (2017), “Self-checking synchronous FSM network design for path delay faults”, Proceedings of the 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29-October 2, 2017, pp. 696-699. DOI: 10.1109/EWDTS.2017.8110129.
https://doi.org/10.1109/EWDTS.2017.8110129
21. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2010), “On sum code properties in concurrent error detection systems”, Avtomatika i telemekhanika, no. 6, pp. 155-162.
22. Das, D., and Touba, N.A. (1999), “Synthesis of Circuits with Low-Cost Concurrent Error Detection Based on Bose-Lin Codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, Issue 1-2, pp. 145-155. DOI: 10.1023/A:1008344603814.
https://doi.org/10.1023/A:1008344603814
23. Das, D. and Touba, N.A. (1999), “Weight-based codes and their application to concurrent error detection of multilevel circuits”, Proceedings of the 17th IEEE VLSI Test Symposium, USA, CA, Dana Point, April 25-29, 1999, pp. 370-376.
https://doi.org/10.1109/VTEST.1999.766691
24. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2016), “Generic two-modulus sum codes for technical diagnostics of discrete systems problems”, Proceedings of the 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, Armenia, October 14-17, 2016, pp. 256-260. DOI: 10.1109/EWDTS.2016.7807713.
https://doi.org/10.1109/EWDTS.2016.7807713
25. Bose, B. and Lin, D.J. (1985), “Systematic unidirectional error-detection codes”, IEEE Transaction on Computers, Vol. C-34, Nov., pp. 1026-1032.
https://doi.org/10.1109/TC.1985.1676535
26. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2015), “Applications of modular summation codes to concurrent error detection systems for combinational Boolean circuits”, Avtomatika i telemekhanika, no. 10, pp. 152-169.
https://doi.org/10.1134/S0005117915100112
27. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. I. Ability of modulo codes to detect error in data vectors”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 27-48.
28. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “Formation of the Berger modified code with minimum number of undetectable errors of data bits”, Elektronnoe modelirovanie, Vol. 34, no. 6, pp. 17-29.
29. Blyudov, A.A., Efanov, D.V. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2014), “On codes with summation of data bits in concurrent error detection systems”, Avtomatika i telemekhanika, no. 8, pp. 131-145.
https://doi.org/10.1134/S0005117914080098
30. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. and Nikitin, D. (2015), “Sum code formation with minimum total number of undetectable errors in data vectors”, Proceedings of the 13th IEEE East-West Design &Test Symposium (EWDTS`2015), Batumi, Georgia, September 26-29, 2015, pp. 141-148. DOI: 10.1109/EWDTS.2015.7493112.
https://doi.org/10.1109/EWDTS.2015.7493112
31. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2016), “On one method of formation of optimum sum code for technical diagnostics systems”, Proceedings of the 14th IEEE East-West Design & Test Symposium (EWDTS`2016), Yerevan, Armenia, October 14-17, 2016, pp. 158-163. DOI: 10.1109/EWDTS.2016.7807633.
https://doi.org/10.1109/EWDTS.2016.7807633
32. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2017), “Codes with summation with a sequence of weight coefficients, forming a natural series of numbers, in concurrent error detection systems”, Elektronnoe modelirovanie, Vol. 39, no. 5, pp. 37-58.
33. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Kotenko, A.G. (2017), “Modulo codes with summation of weighted transitions with natural number sequence of weights”, Trudy SPIIRAN, no. 1, pp. 137-164. DOI: 10.15622/SP.50.6.
https://doi.org/10.15622/sp.50.6

Full text: PDF

TRAINABLE MODEL OF THE CALCULUS OVER CLASSIFICATIONS

H.А. Kravtsov, Cand. Sc. (Eng.), V.I. Koshel, Post-graduate, A. V. Dolgorukov, Post-graduate
Pukhov Institute for Problems in Electrical Engineering, 15 General Naumov St, Kyiv, 03164, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.   This email address is being protected from spambots. You need JavaScript enabled to view it. This email address is being protected from spambots. You need JavaScript enabled to view it.
V.V. Tsurkan, Sc. (Eng.),
National Technical Institute of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute” (22, Bldg, 37 Pobeda St, Kyiv, 03056, Ukraine, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2018, 40(3):63-76
https://doi.org/10.15407/emodel.40.03.063

ABSTRACT

The authors investigate the classical concept of measure in accordance with symmetry conditions, reflexivity and triangle inequality. The requirements to the measure have been formulated for its further use in the theory of the calculus over classification. Some features of the distance function, correlation coefficient, cosine measure of similarity are signification restrictions for applying them for the theory. All measures used in practice have been studied. The results of research have shown that new measure should be introduced that has been proposed. The authors have given formal definition of the trainable model of calculus over classification.

KEYWORDS

similarity measure, difference measure, distance function, calculation model, model trainability, continuum of equivalent measures

REFERENCES

1. Kravtsov, H.A. (2016), “Measure of difference between classifications”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 73-87.
2. Diuran, B. and Odell, P. (1977), Klasternyi analiz [Cluster analysis], Translated by E.Z. Demidenko, Statistika, Moscow, USSR.
3. Semkin, B.I. and Gorshkov, M.V. (2008), “The axiomatic introduction of similarity measures, differences measures, compatibility and dependencies for components of the biological variety”, Vestnik Tikhookeanskogo gosudarstvennogo ekonomicheskogo universiteta, no. 4, pp. 31-46.
4. Kim, J.-O., Miuller, Ch.U., Klekka, U.R., et al. (1989), Faktornyi diskriminantnyi i klasternyi analiz [Factorial, discriminant and cluster analysis], Translated from English, Finansy i statistika, Moscow, USSR.
5. Jaccard, P. (1901), Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines, Bulletin de la Societe Vaudoise des Sciences Naturelles, Vol. 37 (140), pp. 241-272, DOI : 10.5169/seals-266440.
6. Levandowsky, M. and Winter, D. (1971), Distance between Sets, Nature, Vol. 234, pp. 34-35, DOI : 10.1038/234034a0.
https://doi.org/10.1038/234034a0
7. Sörensen, T. (1948), A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, Biologiske Skrifter, Vol. 5, no. 4, pp. 1-34.
8. Kulczynski, S. (1927), Zespoly róslin w Pieninach (Die Pflanzenassociationen der Pienenen), Bulletin International de L’Acad´emie Polonaise des Sciences et des Letters, Classe des Sciences Mathematiques et Naturelles, Serie B, Suppl´ement II, 2, pp. 57-203.
9. Sokal, R.R. and Sneath, P.H.A. (1963), Principles of numerical taxonomy, W.H. Freeman&Co., New York, USA.
10. Szymkiewicz, D. (1934), Une contribution statistique a la gographie floristique, Acta Soc. Bot. Polon, Vol. 34, no. 3, pp. 249-265.
https://doi.org/10.5586/asbp.1934.012
11. Simpson, G.G. (1947), Holarctic mammalian faunas and continental relationship during the Cenozoic, Bull. Geol. Sci. America, Vol. 58, no. 2, pp. 613-688.
https://doi.org/10.1130/0016-7606(1947)58[613:HMFACR]2.0.CO;2
12. Braun-Blanquet, J. (1951), Pflanzensoziologie Grundzüge der Vegetationskunde, Springer-Verlag Wien, Berlin, Germany, DOI : 10.1007/978-3-7091-4078-9.
https://doi.org/10.1007/978-3-7091-4078-9
13. Ochiai, A. (1957), Zoogeographical studies on the soleoid fishes found Japan and its neighboring regions-II, Bull. Jap. Soc. sci. Fish, Vol. 22, no. 9, pp. 526-530, DOI : 10.2331/suisan.22.526.
https://doi.org/10.2331/suisan.22.526
14. Semkin, B.I. (1979), “The equality of similarity measures and hierarchical classification of multidimensional data”, Hierarchical structures built over classifications in the geographical ecology and systematics, pp. 97-112.

Full text: PDF