Electronic Modeling

Vol 39, No 5 (2017)

https://doi.org/10.15407/emodel.39.05

CONTENTS

Mathematical Modeling and Computation Methods

  MELNYK I.V.
Modeling of Triode Sources of Electrons of a High-Voltage Glow Discharge (HGD) with Plate Control Electrode and Conical Anode


3-20
  KLEVTSOV Yu.A.
Modeling of Objects with Distributed Parameters of the Fourth Order

21-36

Computational Processes and Systems

  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V.
Codes with Summation with a Sequence of Weight Coefficients, Forming a Natural Series of Numbers, in Concurrent Error Detection Systems

37-58

Application of Modeling Methods and Facilities

  KRAVTSOV H.A., KOSHEL V.I.
Classification Calculus. The Classification Correctness


59-70
  KUTSAN Yu.H., BLINOV I.V., IVANOV H.A.
Modelling of Tariff and Price Formation on Retain Market of Electrical Energy of Ukraine in New Conditions of its Functioning


71-80
  KALINOVSKY Ya.A., BOYARINOVA Yu.E., SUKALO A.S., KHITSKO Ya.V.
Software Complex for Hypercomplex Computations


81-96
  MAKARICHEV A.V., KUD A.A., SHCHUKIN A.B.
Sum of Increment Maxima in a Multichannel Service System when Modeling Auction


97-104
  CHEMERYS V.T.
Contact Surface Resistivity as a Favorable Condition of Commutation Process

105-112

MODELING OF TRIODE SOURCES OF ELECTRONS OF A HIGH-VOLTAGE GLOW DISCHARGE (HGD) WITH PLATE CONTROL ELECTRODE AND CONICAL ANODE

I.V. Melnyk

Èlektron. model. 2017, 39(5):03-20
https://doi.org/10.15407/emodel.39.05.003

ABSTRACT

Themethods ofmodeling of triode sources of electrons of a high-voltage glow discharge (HGD) with plate control electrode and conical anode have been stated. The proposed methods are based on iteration algorithmwhich permits determining thermodynamic parameters of free electrons in anode plasma with allowance for electrical parameters of themodel and electro-physical parameters ofmaterials used for electrodes and working gas. Modeling resulted in obtaining dependences of energy efficiency of the electron sources on accelerating voltage, burning voltage of a control bit and reduced pressure in the discharge gap. It has been established that the energy efficiency of electron sources of HGD with plate control electrode and conical anode is from 70 to 85%.

KEYWORDS

triode sources of electrons, high-voltage glow discharge, electrical control of discharge current, anode plasma, energy efficiency.

REFERENCES

1. Ladokhin, S.V., Levitsky, N.I., Chernyavsky, V.B. et al. (2007), Elektronnoluchevaya plavka v liteinom proizvodstve [Electron-beam melting in foundry], Stal, Kyiv, Ukraine.
2. Grechanyuk, M.I., Melnyk, A.G., Grechanyuk, I.M. et al. (2014), “Modern electron beam technologies and equipment for melting and physical vapor deposition of different materials”, Elektrotechnica and Elektronika (E+E), Vol. 49, no. 5-6, pð. 115-121.
3. Mattausch, G., Zimmermann, B., Fietzke, F. et al. (2014), “Gas discharge electron sources — proven and novel tools for thin-film technologies”, Elektrotechnica and Elektronika (E+E), Vol. 49, no. 5-6, pp. 183-195.
4. Feinaeugle, P., Mattausch, G., Schmidt, S. and Roegner, F.H. (2011), “A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate PVD”, Society of Vacuum Coaters, Proceedings of the 54th Annual Technical Conference, Chicago, 2011, pp. 202-209.
5. Yarmolich, D., Nozar, P., Gleizer, S. et al. (2011), “Characterization of deposited films and the electron beam generated in the pulsed plasma deposition gun”, Japanese Journal of Applied Physics, Vol. 50, 08JD03.
6. Mattausch, G., Scheffel, B., Zywitzki, O. et al. (2012), “Technologies and tools for the plasma-activated EB high-rate deposition of Zirconia”, Elektrotechnica and Elektronika (E+E), Vol. 47, no. 5-6, pp. 152-158.
7. Melnik, I.V. (2013), “Generalized methods of modeling triode sources of electrons of high-voltageglow discharge”, Elektronnoe modelirovanie, Vol. 35, no. 4, pp. 93-107.
8. Denbnovetsky, S.V., Melnyk, V.I., Melnyk, I.V. and Tugay, B.A. (2003), “Model of control of glow discharge electron gun current for microelectronics production applications”, Proceedings of SPIE. Sixth International Conference on “Material Science and Material Properties for Infrared Optoelectronics”, Vol. 5065, pp. 64-76.
https://doi.org/10.1117/12.502174
9. Schiller, S., Geisig, U. and Pantser, S. (1980), Elektronnoluchevaya tekhnologiya [Electron-beam technology], Energiya, Moscow, USSR.

Full text: PDF (in Russian)

MODELING OF OBJECTS WITH DISTRIBUTED PARAMETERS OF THE FOURTH ORDER

Yu.A. Klevtsov

Èlektron. model. 2017, 39(5):21-36
https://doi.org/10.15407/emodel.39.05.021

ABSTRACT

Based on the theory of finite integral transformations the author has considered a class of models—transfer functions of the objects, which description requires partial differential equations. The rules establishing the correspondence between operations in the space-time and spectral domain are presented. The examples of modeling the objects with distributed parameters are considered.

KEYWORDS

finite integral transformations, systems with distributed parameters, transfer function, mathematical modeling.

REFERENCES

1. Solodovnikov, V.V. and Semenov, V.V. (1974), Spektralnaya teoriya nestatsionarnykh sistem upravleniya [Spectral theory of non-stationary control systems], Nauka, Moscow, USSR.
2. Kraskevich, V.Ye. and Klevtsov, Yu.A. (1981), “Spectral method of structural-parametric identification of objects with distributed parameters”, Vestnik KPI, Ser. Tekhnicheskaya kibernetika, Vol. 5, pp. 10-12.
3. Kraskevich, V.Ye. and Klevtsov, Yu.A. (1981), “Spectral representation of linear objects with distributed parameters”, Kibernetika na morskom transporte, Vol. 10, pp. 87-94. 
4. Klevtsov, Yu.A. (1988), “Spectral description of objects with distributed parameters”, Elektronnoe modelirovanie, Vol. 10, no. 3, pp. 27-31.
5. Klevtsov, Yu.A. (2001), “Algorithm for modeling a boundary value problem of the third kind”, Elektronnoe modelirovanie, Vol. 23, no. 3, pp. 40-46.
6. Klevtsov, Yu.A. (2012), “Modeling multidimensional objects with distributed parameters”, Elektronnoe modelirovanie, Vol. 34, no. 5, pp. 20-40.
7. Lancaster, P. (1978), Teoriya matrits [Matrix theory], Nauka, Moscow, USSR.
8. Farlou, S. (1985), Uravneniya s chastnymi proizvodnymi dlya nauchnykh rabotnikov i inzhenerov [Partial differential equations for scientists and engineers], Mir, Moscow, USSR.
9. Klevtsov, Yu.A. (2016), “Structural transformations of models of systems with distributed parameters”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 35-46.
10. Butkovskiy, A.G. (1979), Kharakteristiki sistem s raspredelennymi parametrami [Characteristics of distributed systems], Nauka, Moscow, USSR.
11. Klevtsov, Yu.A. (2011), “Modeling the object with distributed parameters defined on a nonrectangular domain”, Elektronnoe modelirovanie, Vol. 33, no. 1, pp. 47-55.

Full text: PDF (in Russian)

CODES WITH SUMMATION WITH A SEQUENCE OF WEIGHT COEFFICIENTS, FORMING A NATURAL SERIES OF NUMBERS, IN CONCURRENT ERROR DETECTION SYSTEMS

V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov

Èlektron. model. 2017, 39(5):37-58
https://doi.org/10.15407/emodel.39.05.037

ABSTRACT

Features of the class of modified weighted codes with summation with a sequence of weight coefficients forming a natural series of numbers are described. It is established that the properties of error detection by modified codes are significantly influenced by the method of calculating the correction factor for the formation of the total value of the weight of single bits of the information vector. Theoretical results are confirmed by the results of experiments with a set of test combinational circuits LGSynth`89. It is established that by changing the rules for calculating the correction factor for code modification, it is possible to have influence on the structural redundancy of the concurrent error detection systems. The obtained results can be effective in organization of the check of combinational logic circuits and allow building self-checked structures with less hardware costs in comparison with duplication.

KEYWORDS

combinational circuit, concurrent error detection system, Berger code, modified weighted Berger code, error detection, structural redundancy.

REFERENCES

1. McCluskey, E.J. (1986), Logic Design Principles: With Emphasis on Testable Semicustom Circuits, Prentice Hall PTR, New Jersey, USA.
2. Sogomonyan, E.S., and Slabakov, E.V. (1989), Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Self-checking devices and failover systems], Radio i svyaz, Moscow, Russia.
3. Fujiwara, E. (2006), Code design for dependable systems: Theory and practical applications, John Wiley & Sons, New Jersey, USA.
4. Drozd, A.V. (2008), “An untraditional view on operational diagnostics of computing devices”, Problemy upravleniya, no. 2, pp. 48-56.
5. Drozd, A.V., Kharchenko, V.S., Antoshchuk, S.G., et al. (2012), Rabocheye diagnostirovanie bezopasnykh informatsionno-upravlyayuschikh sistem [On-line testing of safe information and control systems], National Aerospace University «KhAI», Kharkov, Ukraine.
6. Zelenaya IT-inzheneriya. V dvuh tomah. Tom 1. Printsipy, modeli, komponenty [Green IT engineering. Vol. 1: Concepts, models, components], Ed. V.S. Kharchenko, National Aerospace University «KhAI», Kharkov, Ukraine.
7. Gorshe, S.S. and Bose, B. (1996), “A self-checking ALU design with efficient codes”, Proceedings of the 14th VLSI test symposium, Princeton, NJ, USA, pp. 157-161.
https://doi.org/10.1109/VTEST.1996.510851
8. Touba, N.A. and McCluskey, E.J. (1997), “Logic synthesis of multilevel circuits with concurrent error detection”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and System, Vol. 16, Jul., pp. 783-789.
https://doi.org/10.1109/43.644041
9. Nicolaidis, M. and Zorian, Y. (1998), On-Line Testing for VLSI – A Compendium of Approaches, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20.
https://doi.org/10.1023/A:1008244815697
10. Das, D. and Touba, N.A. (1999), “Synthesis of circuits with low-cost concurrent error detection based on Bose-Lin codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, Iss. 1-2, pp. 145-155.
https://doi.org/10.1023/A:1008344603814
11. Mitra, S. and McCluskey, E.J. (2000), Which concurrent error detections Scheme to choose?, Proceedings of International Test Conference, 2000, USA, Atlantic City, NJ, 03-05 October 2000, pp. 985-994.
https://doi.org/10.1109/TEST.2000.894311
12. Carter, W.C., Duke, K.A. and Schneider, P.R. (1971), Self-checking error checker for two-rail coded data, Jan. 26, 1971, United States Patent Office, No. 3,559,167, Peekskill, N.Y., 10 p.
13. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1992) Samoproveryaemye diskretnye ustroystva [Self-checking discrete devices], Energoatomizdat, St. Petersburg, Russia.
14. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., Dmitriev, V.V. and Khuan, C. (2016), “Optimal system code on the basis of weighing of information vector digits and summation without carry for the concurrent error detection systems”, Izvestiya Prterburgskogo universiteta putei soobshcheniya, no. 1, pp. 75-84.
15. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. I. Ability of modulo codes to detect error in data vectors”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 27-48.
16. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V., and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. II. Decrease of hardware redundancy of concurrent error detection systems”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 47-61.
17. Berger, J.M. (1961), “A note on error detecting codes for asymmetric channels”, Information and Control, Vol. 4, Iss. 1, pp. 68-73.
https://doi.org/10.1016/S0019-9958(61)80037-5
18. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2010) “On sum code properties in concurrent error detection systems”, Avtomatika i telemekhanika, no. 6, pp. 155-162.
19. Goessel, M., Morozov, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1997), “Investigation of combination self-testing devices having independent and monotone independent outputs”, Avtomatika i telemekhanika, no. 2, pp. 180-193.
20. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “Formation of the Berger modified code with minimum number of undetectable errors of data bits”, Elektronnoe modelirovanie, Vol. 34, no. 6, pp. 17-29.
21. Blyudov, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2012), “A modified summation code for organizing control of combinatorial circuits”, Avtomatika i telemekhanika, no. 1, pp. 169-177.
https://doi.org/10.1134/S0005117912010122
22. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. and Blyudov, A. (2013), “On the problem of selection of code with summation for combinational circuit test organization”, Proceedings of 11th IEEE East-West Design &Test Symposium (EWDTS`2013), Rostov-on-Don, Russia, September 27-30, 2013, pp. 261-266. DOI 10.1109/EWDTS.2013.6673133.
23. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2014), “On codes with summation of data bits in concurrent error detection systems”, Avtomatika i telemekhanika, no. 8, pp. 131-145.
https://doi.org/10.1134/S0005117914080098
24. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl. and Nikitin, D. (2015), “Sum code formation with minimum total number of undetectable errors in data vectors”, Proceedings of 13th IEEE East-West Design & Test Symposium (EWDTS`2015), Batumi, Georgia, September 26-29, 2015, pp. 141-148.
https://doi.org/10.1109/EWDTS.2015.7493112
25. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2016), “On one method of formation of optimum sum code for technical diagnostics systems”, Proc. of 14th IEEE East-West Design & Test Symposium (EWDTS’2016), Yerevan, Armenia, October 14-17, 2016, pp. 158-163.
https://doi.org/10.1109/EWDTS.2016.7807633
26. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Errors classification in information vectors of systematic codes”, Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333-343, DOI 10.17586/0021-3454-2015-58-5-333-343.
27. Efanov, D.V. (2016) “On the problem of modified codes with summation of weighted data bits with natural numbers sequence of weight indexes generators synthesis”, Vestnik Tomskogo gosudarstvennogo Universiteta. Upravleniye, vychislitelnaya tekhnika i informatika, no. 4, pp. 13-26.
https://doi.org/10.17223/19988605/37/2
28. Efanov, D.V. (2016), “The method of weighted code with summation generator synthesis”, Izvestiya vysshikh uchebnykh zavedeniy. Physics, Vol. 59, no. 8/2, pp. 33-36.
29. Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.R, Brayton, R.K., and Sangiovanni-Vincentelli, A. (1992), SIS: A system for sequential circuit synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA.
30. Collection of digital design Benchmarks, available at: http://ddd.fit.cvut.cz/prj/Benchmarks/].

Full text: PDF (in Russian)

CLASSIFICATION CALCULUS. THE CLASSIFICATION CORRECTNESS

H.A. Kravtsov, V.I. Koshel

Èlektron. model. 2017, 39(5):59-70
https://doi.org/10.15407/emodel.39.05.059

ABSTRACT

The methods of artificial intelligence used to cataloguize information require the existence of classifications or taxonomies for determining class affiliation of subjects, phenomena, actions etc. However, for correct solving of classification problems it is necessary that all the used classifications/ taxonomies were correct. The authors consider the notion «classification correctness” and investigate the possibility to identify some errors of dividing by using the theory of classifications calculus. The authors also propose visual and heuristic approaches for detecting the following errors: dividing with remainder terms, controversial dividing and dividing jump.

KEYWORDS

classification, correctness, division errors, measure of difference, fixed class, normalized measure.

REFERENCES

1. Kravtsov, H.A. (2016), “Measure of difference between classifications”, Elektronnoe modelirovanie, Vol. 38, no. 4, pp. 81-97.
2. Kravtsov, H.A. (2016), “Model of computations over classifications”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 73-87.
3. Berztiss, A.T. (1974), Struktura dannykh [Data structure], Statistika, Moscow, USSR.
4. Adamek, J., Herrlich, H. and Strecker, G.E. “Abstract and concrete categories. The joy of cats”, available at: http://katmat.math.uni-bremen.de/acc/acc.pdf. (accessed June, 2017).
5. Korotkov, E.M. (2004), Issledovanie system upravleniya [Study of control systems], DeKA, Moscow, Russia.
6. Ivlev, Yu.V. (2008), Logika [Logic], TK Velbi, Prospekt, Moscow, Russia.
7. Bukvy!: Pravila deleniya v logike i oshibki deleniya [Letters! Dividing rules in the logic and dividing errors], available at: http://bukvi.ru/pravo/logika/pravila-deleniya-v-logike-i-oshibkiv-delenii.html. (accessed June, 2017).

Full text: PDF (in Russian)