Electronic Modeling

Vol 39, No 2 (2017)

https://doi.org/10.15407/emodel.39.02

CONTENTS

Mathematical Modeling and Computation Methods

  KRAVTSOV H.A.
Classification Calculus. Validation of Qualification in Social Networks


3-14
  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V., PIVOVAROV D.V.
Boolean Complement Method Based on Constant-weight Code “1-out-of-4” for Formation of Totally Self- checking Concurrent Error Detection Systems


15-34
  ANDREEVA O.L., BORTS B.V., KOSTIKOV A.O., TKACHENKO V.I.
Theoretical Studies of Elementary Convection Cell in the Horizontal Layer of Viscous Incompressible Liquid with Rigid and Mixed Boundary Conditions

35-46

Computational Processes and Systems

  MASYUK A.L.
Hybrid Parallel Equation Solver for Normal Air Distribution Based on Direct Method

47-58

Application of Modeling Methods and Facilities

  VYNNYCHUK S.D., KONDRASHCHENKO V.Ya.
Choosing Diameters for the Elements of Single Output Flow Distribution Systems with Constraints on the Order of Their Sizes


59-74
  FARKHADZADEH E.M., MURADALIYEV A.Z., FARZALIYEV Y.Z., RAFIYEVA T.K.
Comparative Analysis of Methods for Calculation of the Integrated Indicators Characterizing Operational Efficiency of Eps Objects


75-90
  HAVRYSH V.I., TUSHNYTSKYY R.B., KRAYOVSKYY V.Ya., LEVUS Ye.V.
Investigation of Temperature Fields in Microelectronic Devices of Layered Structure with Through Inclusions


91-102
  CHEMERYS V.T., BORODIY I.A.
Simplified Method of Averaging Parameters of Multi-layer Periodic Medium for the Wave Equation


103-112

CLASSIFICATION CALCULUS. VALIDATION OF QUALIFICATION IN SOCIAL NETWORKS

H.А. Kravtsov

Èlektron. model. 2017, 39(2):03-14
https://doi.org/10.15407/emodel.39.02.003

ABSTRACT

Operators of the largest social media state the problem of experts’ qualification validation. The suggested approach is based on the classification calculus theory allowing minimizing subjectivity during self-evaluation and mutual evaluation of skills and is focused on nominal qualification value and endorsement validation structure. The aggregation of nominal qualification value and endorsement validation structure permits the application of variability theory for the purpose of pragmatic expert recruitment.

KEYWORDS

classification, expert, qualification, endorsement, subjectivity, objectivity, actualization, assessment.

REFERENCES

1. Morrison, M. (2016), “Can you trust a LinkedIn profile? Will recruiters trust yours?”, available at: https://rapidbi.com/can-you-trust-a-linkedin-profile-will-recruiters-trust-yours/ (accessed December 14, 2016).
2. Adams, S. (2013), “Everything you need to know about LinkedIn endorsements”, available at:http://www.forbes.com/sites/susanadams/2013/12/24/everything-you-need-to-know-aboutlinkedin-
endorsements-2/#23a19f1e1e4d (accessed December 14, 2016).
3. Maybury, M., D’Amore, R. and House, D. Expert finding for collaborative virtual environments. Communications of the ACM 14(12): 55-56. In Ragusa, J. and Bochenek, G. (eds). Special Section on Collaboration Virtual Design Environments. December (2001).
4. Kravtsov, H.A. (2016), “Model of computations over classifications”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 73-87.
https://doi.org/10.15407/emodel.38.01.073
5. Cormen, T.Kh., Leizerson, Ch.I., Rivest, R.L. and Shtain, K. (1990), Algoritmy: postroyeniye i analiz [Algorithms: structure and analysis], Viliyams, Moscow, Russia.
6. Zhang, L. and Tu, W. “Six degrees of separation in online society”, available at: http://journal.webscience.org/147/2/websci09_submission_49.pdf (accessed December 14, 2016).
7. Bennett, D. (2013), “The Dunbar number, from the guru of social networks”, available at: https://www.bloomberg.com/news/articles/2013-01-10/the-dunbar-number-from-the-guru-ofsocial-
networks (accessed December 15, 2016).
8. Totsenko, V.G. (2002), Metody i sistemy podderzhki prinyatiya resheniy. Algoritmicheskiy aspect [Models and systems for decision making support], Naukova dumka, Kiev, Ukraine.
9. Clow, K.E. and Baack, D. (2005), Variability theory. Concise Encyclopedia of Advertising.

Full text: PDF (in Russian)

BOOLEAN COMPLEMENT METHOD BASED ON CONSTANT-WEIGHT CODE “1-OUT-OF-4” FOR FORMATION OF TOTALLY SELF-CHECKING CONCURRENT ERROR DETECTION SYSTEMS

V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov, D.V. Pivovarov

Èlektron. model. 2017, 39(2):15-34
https://doi.org/10.15407/emodel.39.02.015

ABSTRACT

Authors offer the way of formalization of Boolean complement functions calculation rules in concurrent error detection systems based on constant-weight code “1-out-of-4”. Herewith the procedure of complement function values selection is excluded and the property of totally self-checking is provided – all the XOR gates in Boolean complement module and checker are checked by guarantee. The number of ways of completion of Boolean complement functions of “1-out-of-4” code with complement of three operational functions only is established as well as the minimum number of operational vectors needed for totally self-checking provision.

KEYWORDS

concurrent error detection system, Boolean complement, constant-weight code, “1-out-of-4” code, totally self-checking structure.

REFERENCES

1. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproveryaemyye ustroystva i otkazoustoychivyye sistemy [Self-checking devices and fault-tolerant systems], Radio i svyaz, Moscow, USSR.
2. Drozd, A.V., Kharchenko, V.S., Antoshchuk, S.G. and et al. (2012), Rabocheye diagnostirovanie bezopasnykh informatsionno-upravlyayushchikh sistem [On-line testing for safe information-
control systems], N.E. Zhukovsky Natsionalny Aerokosmichesky Universistet «KhAI». Kharkov, Ukraine.
3. Kharchenko, V., Kondratenko, Yu., and Kacprzyk, J. (2017), Green IT engineering: concepts, models, complex systems architectures, Springer Book series: Studies in Systems, Decision and Control, DOI: 10.1007/978-3-319-44162-7.
https://doi.org/10.1007/978-3-319-44162-7
4. Mitra, S. and McCluskey, E.J. (2000), “Which concurrent error detection scheme to choose?”, Proceedings of International Test Conference 2000, Atlantic City, NJ, USA, October 03-05, 2000, pp. 985-994.
https://doi.org/10.1109/TEST.2000.894311
5. Slabakov, E.V. and Sogomonyan, E.S. (1980), “Formation of totally self-checking combinational devices with the use of constant-weight codes”, Avtomatika i telemekhanika, no. 9, pp. 173-181.
6. Slabakov, E.V. and Sogomonyan, E.S. (1981), “Self-checking computing devices and systems” (Review), Avtomatika i telemekhanika, no. 11, pp. 147-167.
7. Piestrak, S.J. (1995), Design of self-testing checkers for unidirectional error detecting codes, Oficyna Wydawnicza Politechniki Wrociavskiej, Wroc³aw, Poland.
8. Das, D. and Touba, N.A. (1999), “Synthesis of circuits with low-cost concurrent error detection based on Bose-Lin codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, iss. 1-2, pp. 145-155, DOI: 10.1023/A:1008344603814.
https://doi.org/10.1023/A:1008344603814
9. Nicolaidis, M., and Zorian, Y. (1998), “On-line testing for VLSI - a compendium of approaches”, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20.
https://doi.org/10.1023/A:1008244815697
10. Das, D. and Touba, N.A. (1999), “Weight-based codes and their application to concurrent error detection of multilevel circuits”, Proceedings of 17th IEEE Test Symposium, California, USA, pp. 370-376.
https://doi.org/10.1109/VTEST.1999.766691
11. Matrosova, A.Yu., Levin, I. and Ostanin, S.A. (2000), “Self-checking synchronous FSM network design with low overhead”, VLSI Design, Vol. 11, iss. 1, pp. 47-58, DOI:10.1155/2000/46578.
https://doi.org/10.1155/2000/46578
12. Das, D., Touba, N.A., Seuring, M. and Gossel, M. (2000), “Low cost concurrent error detection based on modulo weight-based codes”, Proceedings of IEEE 6th International On-Line Testing Workshop (IOLTW), Palma de Mallorca, Spain, July 3-5, 2000, pp. 171-176.
13. Matrosova, A., Levin, I. and Ostanin, S. (2001), “Survivable Self-Checking Sequential Circuits”, Proceedings of 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2001), CA, San Francisco, USA, October 24-26, 2001, pp. 395-402.
14. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2014), “On codes with summation of data bits in concurrent error detection systems”, Avtomatika i telemekhanika, no. 8, pp. 131-145.
https://doi.org/10.1134/S0005117914080098
15. Sapozhnikov, V.V. and et al. (2002), “Organization of functional checking of combinational circuits by the logic complementmethod”, Elektronnoe modelirovanie, Vol. 24, no. 6, pp. 52-66.
16. Parkhomenko, P.P. and Sogomonyan, E.S. (1981), Osnovy tekhnicheskoy diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnyye sredstva) [Basics of technical diagnostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow, Russia.
17. Goessel, M., Morozov, A.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2003), “Logic complement, a new method of checking the combinational circuits”, Avtomatika i telemekhanika, no. 1, pp. 167-176.
18. Goessel, M., Morozov, A.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2005), “Checking combinational circuits by the method of logic complement”, Avtomatika i telemekhanika, no. 8, pp. 161-172.
https://doi.org/10.1007/s10513-005-0174-2
19. Berger, J.M. (1961), “À note on error detecting codes for asymmetric channels”, Information and Control, Vol. 4, iss. 1, pp. 68-73, DOI: 10.1016/S0019-9958(61)80037-5.
https://doi.org/10.1016/S0019-9958(61)80037-5
20. Bose, B. and Lin, D.J. (1985), “Systematic unidirectional error-detection codes”, IEEE Transactions on Computers, vol. C-34, pp. 1026-1032.
21. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1992), “Self-checking checkers for constant-weight codes”, Avtomatika i telemekhanika, no. 3, pp. 3-35.
22. Göessel, M., Sapozhnikov, Vl., Sapozhnikov, V. and Dmitriev, A. (2000), “A new method for concurrent checking by use of a 1-out-of-4 code”, Proceedings of the 6th IEEE International On-line Testing Workshop, Palma de Mallorca, Spain, July 3-5, 2000, pp. 147-152.
https://doi.org/10.1109/OLT.2000.856627
23. Morozov, A., Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Göessel, M. (2000), “New selfchecking circuits by use of Berger-codes”, Proceedings of the 6th IEEE International On-line Testing Workshop, Palma de Mallorca, Spain, July 3-5, 2000, pp. 171-176.
24. Sapozhnikov, V.V. and et al. (2004), “Design of totally self-checking combinational circuits by use of complementary circuits”, Proceedings of East-West Design and Test Workshop, Yalta, Ukraine, 2004, pp. 83-87.
25. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New methods of concurrent checking: Edition 1, Springer Science+Business Media B.V., Dodrecht, Germany.
26. Sen, S.K. (2010), “A self-checking circuit for concurrent checking by 1-out-of-4 code with design optimization using constraint don’t cares”, Proceedings of National Conf. on Emerging
Trends and Advances in Electrical Engineering and Renewable Energy (NCEEERE 2010), December 22-24, 2010, Manipal Institute of Technology, Sikkim, India.
27. Das, D.K., Roy, S.S., Dmitiriev, A., Morozov, A. and Gössel, M. (2012), “Constraint don’t cares for optimizing designs for concurrent checking by 1-out-of-3 codes”, Proceedings of the 10th International Workshops on Boolean Problems, September, 2012, Freiberg, Germany, pp. 33-40.
28. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2016), “Method of logical devices concurrent error detection system based on “2-out-of-4” code”, Izvestiya vuzov. Priborostroenie, Vol. 59, no. 7, pp. 524-533, DOI 10.17586/0021-3454-2016-59-7-524-533.
29. Efanov, D., Sapozhnikov, V. and Sapozhnikov, Vl. (2016), “Methods of organization of totally self-checking concurrent error detection system on the basis of constant-weight «1-outof-3»-code”, Proceedings of 14th IEEE East-WestDesign and Test Symposium (EWDTS’2016), October 14-17, 2016, Armenia, Yerevan, pp. 117-125, DOI: 10.1109/EWDTS.2016.7807622.
https://doi.org/10.1109/EWDTS.2016.7807622
30. Sapozhnikov, V., Sapozhnikov, Vl. and Efanov, D. (2016), “Concurrent error detection of combinational circuits by the method of Boolean complement on the base of «2-out-of-4» code”, Proceedings of 14th IEEE East-West Design and Test Symposium (EWDTS'2016). October 14-17, 2016, Yerevan, Armenia, pp. 126-133, DOI: 10.1109/EWDTS.2016.7807677.
https://doi.org/10.1109/EWDTS.2016.7807677
31. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2016), “Formation of totally self-checking structures of concurrent error detection systems with use of constant-weight code “1-out-of-3”, Elektronnoe modelirovanie, Vol. 38, no. 6, pp. 25-43.
https://doi.org/10.15407/emodel.38.06.025
32. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2017), “Design of self-checking concurrent error detection systems based on «2-out-of-4» constant-weight code”, Problemy upravleniya, iss. 1, pp. 57-64.
33. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1992), Samoproveryaemye diskretnye ustroystva [Self-checking discrete devices], Energoatomizdat, St. Petersburg, Russia.
34. Carter, W.C., Duke, K.A. and Schneider, P.R. (1971), Self-checking error checker for two-rail coded data, United States Patent Office, filed July 25, 1968, ser. No. 747, 533, patented Jan. 26, N. Y., USA.
35. Huches, J.L.A., McCluskey, E.J. and Lu, D.J. (1984), “Design of totally self-checking comparators with an arbitrary number of inputs”, IEEE Transactions on Computers, Vol. C-33, no. 6, pp. 546-550.
https://doi.org/10.1109/TC.1984.1676478
36. Sapozhnikov, V.V. and Rabara, B. (1982), “Universal algorithm of 1/n-checkers synthesis”, Problemy peredachi informatsii, Vol. 18, iss. 3, pp. 62-73.
37. Aksyonova, G.P. (1979), “Necessary and sufficient conditions for the design of totally checking circuits of compression by modulo 2”, Avtomatika i telemekhanika, no. 9, pp. 126-135.
38. Aksyonova, G.P. (2008), “On functional diagnosis of discrete devices under imperfect data processing conditions”, Problemy upravleniya, iss. 5, pp. 62-66.
39. Collection of Digital Design Benchmarks [URL: http://ddd.fit.cvut.cz/prj/Benchmarks/].
40. Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.R., Brayton, R.K. and Sangiovanni-Vincentelli, A. (1992), SIS: A system for sequential circuit synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA.

Full text: PDF (in Russian)

THEORETICAL STUDIES OF ELEMENTARY CONVECTION CELL IN THE HORIZONTAL LAYER OF VISCOUS INCOMPRESSIBLE LIQUID WITH RIGID AND MIXED BOUNDARY CONDITIONS

O.L. Andreeva, B.V. Borts, A.O. Kostikov, V.I. Tkachenko

Èlektron. model. 2017, 39(2):35-46
https://doi.org/10.15407/emodel.39.02.035

ABSTRACT

Results of theoretical investigations of formation of convective cells with mixed boundary conditions in vacuum oil are presented. For a special case the analytical solutions were obtained for Navier–Stokes equation with rigid boundary conditions. The expressions of distribution for perturbed velocity and temperature in a cylindrical convective cell were obtained. These distributions were compared to similar parameters of free convective cell for the principal mode. It was demonstrated that the diameter of a convective cell is inversely related to the value of minimal wave number of the corresponding boundary value problem, i.e. the diameter of a cell with the mixed boundary conditions is less than the diameter of a cell with free boundary conditions, but it is larger than the diameter of a cell with rigid boundary conditions.

KEYWORDS

elementary convective cell, mixed and rigid boundary conditions, viscous fluid.

REFERENCES

1. Chandrasekhar, S. (1970), Hydrodynamic and hydromagnetic stability, Oxford University Press, Oxford, UK.
2. Neklyudov, I.M., Borts, B.V. and Tkachenko, V.I. (2012), “Applied mechanics”, Proc.KhNU im. V.N. Karazina, Vol. 14(86), no. 2, pp. 29-40.
3. Shchuka, A.A. (2007), Nanoelektronika [Nanoelectronics], Fizmatkniga, Moscow, Russia.
4. Sazhin, B.S. and Reutskiy, V.A. (1990), Sushka i promyvka tekstilnykh materialov: teoriya, raschet protsessov [Drying and washing of textile materials: theory, process analysis], Legprombytizdat, Moscow, Russia.
5. Myuller, G. (1991), Vyraschivanie kristallov iz rasplava. Konvektsiya i neodnorodnosti [Flux growth. Convection and heterogeneities], translated from English by V. Bune, Mir, Moscow, Russia.
6. Rykalin, N.N., Uglov, A.A. and Kokora, A.N. (1975), Lazernaya obrabotka materialov [Laser treatment of materials], Mashinostroenie , Moscow, Russia.
7. Gershuni, G.Z. and Zhukhovitskiy, E.M. (1972), Konvektivnaya ustoychivost neszhimaemoy zhidkosti [Convective stability of incompressible fluid], Nauka, Moscow, Russia.
8. Strutt, J.W. (1916), Lord Ràyleigh, Phil. Mag. , Vol. 32, pp. 529-546.
9. Getling, A.V. (1991), “Formation of spatial structures of convection of Rayleigh-Benar”, UFN, Vol. 161, Iss. 9, pp. 1-80.
10. Bozbey, L.S., Kostikov, A.O. and Tkachenko, V.I. (2014), “Elementary convective cell in the layer of incompressible, viscous liquid and its physical properties”, International conference MSS-14, Mode conversion, coherent structures and turbulence, Space Research Institute, Moscow, pp. 322-328.
11. Bozbiei, L., Borts, B., Kazarinov, Yu., Kostikov, A. and Tkachenko, V. (2015), “Experimental study of liquid movement in free elementary convective cells”, Energetika, – Vol. 61, no. 2, pp. 45-56.
https://doi.org/10.6001/energetika.v61i2.3132
12. Silveston, P.L. (1958), Wärmedurchgang in waagerechten Flüssigkeitsschichten, Forsch. Ing. Wes., Bd. 24, no. 29, pp. 59-69.

Full text: PDF (in Russian)

HYBRID PARALLEL EQUATION SOLVER FOR NORMAL AIR DISTRIBUTION` BASED ON DIRECT METHOD

A.L. Masyuk

Èlektron. model. 2017, 39(2):47-58
https://doi.org/10.15407/emodel.39.02.047

ABSTRACT

Structure of the parallel equation solver for the problem of normal air distribution in mine ventilation network is analyzed and improved in the way of merging the existing MIMD structure with the integrated SIMD facilities of the modern CPUs. The algorithm of direct method-based equation solver has been improved by SSE and AVX extensions. Usage of SIMD component of the hybrid MIMD+SIMD structure allows decreasing the amount of the computational iterations several times, thus accelerating the whole simulation process.

KEYWORDS

parallel algorithm, mine ventilation network, normal air distribution, direct method, integrated SIMD facilities.

REFERENCES

1. Pererva, A.A. (1999), “Equation generator and solver of the problem-oriented parallel modeling environment for network objects with non-distibuted parameters”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: “Problemy modelyuvannya ta avtomatyzatsii proektuvannya”, Iss. 10, pp. 164-169.
2. Svjatnyj, V.A. (2006), “Parallel modeling of the complex dynamic systems”, Mezhdunarodnaya konferentsiya. Modelirovanie-2006 [International conference. Simulation], Kyiv, 2006, pp. 83-90.
3. Feldmann, L.P, Svjatnyj, V.A., Resch, M. and Zeitz, M. (2008), Forschungsgebiet: parallele Simulationstechnik (German), Reihe “Probleme der Modellierung und rechnergestützten Projektierung von dynamischen Systemen”, DonNTU, FRTI-Werke, Vol. 9 (150), pp. 9-36.
4. Svjatnyj, V.A., Smagin, O.M. and Solonin, O.M (2003), “Methods of parallelisation of the equation solver for MIMD-model of a network dynamic object”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: Informatika, kibernetika ta obchyslyuvalna tekhnika, Iss. 70, pp. 20-30.
5. Smagin, A.N. (2008), “Efficiency of MPI and OPENMP standards-based MIMD equation solvers for air dynamics of mine airing networks”, Materialy IV Naukovo-praktychnoi konferentsii Donbas-2020: Nauka i tekhnika vyrobnytstvu [Materials of IV Scientific-Practical Conference Donbas-2020: Science and Technology for Industry], Donetsk, May 27-28, 2008, pp. 432-436.
6. Guseva, G.B. and Moldovanova, O.V. (2007), “MIMD parallel equation solver of the network dynamic object with distributed parameters”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: “Problemy modelyuvannya ta avtomatyzatsii proektuvannya”, pp. 149-158.
7. Svjatnyj, V.A. and Moldovanova O.V. (1999), “Equation generator for a parallel model of the network dynamic object with distributed parameters”, Naukovi pratsi Donetskogo Natsionalnogo Tekhnichnogo Universytetu. Seria: “Problemy modelyuvannya ta avtomatyzatsii proektuvannya”, Iss. 10, pp. 135-141.
8. Mikov, A.I. and Zamyatina, E.B. “Loading balance in the distributed systems”, Natsionalny otkryty institut “Intuit”, available at: http://www.intuit.ru/department/algorithms/distrsa/9/1.html

Full text: PDF (in Russian)