Electronic Modeling

Vol 38, No 6 (2016)

https://doi.org/10.15407/emodel.38.06

CONTENTS

Mathematical Modeling and Computation Methods

  IVANOV I.L., MARTYNYUK A.A.
Delayed Control of Power System under Pulse Perturbations


3-14
  KRAVTSOV H.A.
The Calculus over Classifications. Assessment of Classifiers

15-24

Computational Processes and Systems

  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V.
Formation of Totally Selfchecking Structures of Concurrent Error Detection Systems with the Use of Constant-weight Code “1-out-of-3”


25-44
  MINAEV Yu.N., FILIMONOVA O.Yu., MINAEVA J.I.
Fuzzy Set Features of One-dimensional Time Series


45-66
  KALINOVSKY Ya.A., BOYARINOVA Y.E., SINKOVA T.V., SUKALO A.S.
Construction of High Dimensional Isomorphic Hypercomplex Numerical Systems


67-84
  LISTROVOY S.V., LISTROVAYA E.S., KURTSEV M.S.
Methods and Models of Scheduling the Assignment of Packages of Tasks in the Grid System Cluster

85-106

Application of Modeling Methods and Facilities

  LYSENKOV E.A., KLEPKO V.V.
Combined Model for Description of Electrical Conductivity of the Systems Based on Polyethers and Carbon Nanotubes

107-118

DELAYED CONTROL OF POWER SYSTEM UNDER PULSE PERTURBATIONS

I.L. Ivanov, A.A. Martynyuk

Èlektron. model. 2018, 38(6):03-14
https://doi.org/10.15407/emodel.38.06.003

ABSTRACT

The paper deals with the delayed control of a power system under the pulse perturbations. Suffcient conditions of asymptotic stabilization of this system by the delayed proportional differentional controller are obtained via developed approach, based on direct Lyapunov method and Razumikhin technique. Obtained analytical results are represented as a system of nonlinear algebraic inequalities with a set of free parameters.

KEYWORDS

power system, Lyapunov stability, Razumikhin approach, time delay, pulse effects, control.

REFERENCES

1. Kundur, P. (1994), Power system stability and sontrol, McGraw-Hill, USA
2. Pavella, M., Ernst, D. and Ruiz-Vega, D. (2000), Transient stability of power systems: a unified approach to assessment and control, Kluver Academic Publisher, Boston, USA.
3. Chang, H.D., Chu, C.C. and Cauley, G. (1995), Direct stability analysis of electric power systems using energy functions: Theory, applications, and perspective, Proceedings of the IEEE, Vol. 13, pp. 1497-1529.
4. Gruyich, L.T., Martynyuk, A.A. and Ribbens-Pavella, M. (1984), Ustoichivost krupnomasshtabnyh system pri strukturnykh vozmushcheniyakh [Large-scale systems stability under structural perturbations], Naukova dumka, Kiev, Ukraine.
5. Zribi, M., Mahmoud, M.S., Karkoub, M. and Lie, T.T. (2000), H -controllers for linearised time-delay power systems, IEE Proceedings-Generation, Transmission and Distribution, Vol. 147, no. 6, pp. 401-408.
6. Chaudhuri, B., Majumder, R. and Pal, B.C. (2004), “Wide-area measurement-based stabilizing control of power system considering signal transmission delay”, IEEE Transactions on Power Systems, Vol. 19 no. 4, pp. 1971-1979.
https://doi.org/10.1109/TPWRS.2004.835669
7. Yao, W., Jiang, L., Wu, Q.H., Wen, J.Y. and Cheng, S.J. (2011), “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded”, IEEE Transactions on Power Systems, Vol. 26 no. 1, pp. 233-240.
https://doi.org/10.1109/TPWRS.2010.2093031
8. Wu, H., Ni, H. and Heydt, G.T. (2002), “The impact of time delay on robust control design in power systems”, Power Engineering Society Winter Meeting, IEEE, 2002, New York, pp. 1511-1516.
9. Milano, F. and Anghel, M. (2012), “Impact of time delays on power system stability”, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59 no. 4, pp. 889-900.
https://doi.org/10.1109/TCSI.2011.2169744
10. Jia, H., Yu, X., Yu, Y. and Wang, C. (2008), “Power system small signal stability region with time delay”, International Journal of Electrical Power&Energy Systems, Vol. 30, no. 1, pp. 16-22.
https://doi.org/10.1016/j.ijepes.2007.06.020
11. Berger, K., Anderson, R.Â. and Kroninger, H. (1975), “Parameters of lightning flashes”, Electra, no. 41, pp. 23-37.
12. Martynyuk, A.A. and Ivanov, I.L. (2013), “On the connective stability of three-machine power system under impulsive perturbations”, Dopovidi NAN Ukrainy, no. 7, pp. 64-71.
13. Ivanov, I.L. (2012), “Stability of a model of a power system with delay and pulse effects”, Analitychna mekhanika ta ii zastosuvannya. Zbirnyk prats Institutu Matematyky NAN Ukrainy, Vol. 9, no. 1, pp. 114-127.
14. Ivanov, I.L. (2014), “Regulation of power systems under impulsive perturbations”, Elektronnoe modelirovanie, Vol. 36, no. 5, pp. 17-26.
15. Ivanov, I.L. (2015), “An approach for stability analysis of impulsive systems with delay”, Mathematychni problemy mekhaniky i obchyslyuvalnoi tekhniky. Zbirnyk prats Institutu Matematyky NAN Ukrainy, Vol. 12, no. 5, pp. 30-38.
16. Gantmakher, F.R. (1966), Teoriya matrits [The theory of matrices], Nauka, Moscow, USSR.

Full text: PDF (in Russian)

THE CALCULUS OVER CLASSIFICATIONS. ASSESSMENT OF CLASSIFIERS

H.A. Kravtsov

Èlektron. model. 2018, 38(6):15-24
https://doi.org/10.15407/emodel.38.06.015

ABSTRACT

The existing methods of classifier assessment use a set of classes which are comparable both by the probability of appearànce and by semantical interrelation that is they are semantically independent. The developed theory of calculus over classification permits solving the issue of classifier assessment for hierarchical classifications. This papper contains the example of calculation of the precision and completeness of classes of plane-level and multi-level classification with the same confusing matrix.

KEYWORDS

classification, classifier, semantic, precision, completeness, measure of difference.

REFERENCES

1. Kravtsov, H.A. (2016), “Measure of difference between classifications”, Elektronnoe modelirovanie, Vol. 38, no. 4, pp. 81-97.
https://doi.org/10.15407/emodel.38.04.081
2. Kravtsov, H.A. (2016), “Model of computations on classifications”, Elektronnoe modelirovanie, Vol. 38, no. 1, pp. 73-87.
https://doi.org/10.15407/emodel.38.01.073
3. Flakh, P. (2015), Machinnoe obuchenie [Machine learning: The art and science of algorithms that make sense of data], Izd-vo “DMK Press”, Moscow, Russia.
4. Kokhonen, T. (2008), Samoorganizuyuschiesya karty [Self-organizing maps], Binom, Moscow, Russia.
5. Ushakov, D.N. (1935), Tolkovyi slovar russkogo yazyka [Russian definition dictionary], Sovetskaya entsiklopediya, Moscow, Russia.
6. Khaykin, S. (2006), Neyronnye seti. Polnyi kurs [Neural networks: A comprehensive foundation], Izd. “Vilyams”, Moscow, Russia.
7. Bazhenov, D. (2012), Otsenka klassifikatora. Tochnost, polnota, F- mera [Classification performance evaluation. Precision, completeness, F-measure], available at: http://bazhenov.me/blog/2012/07/21/classification-performance-evaluation.html (accessed 2016).
8. Kharman, H.H. (1972), Sovremennyi faktornyi analiz [Modern Factor Analysis], Statistika, Moscow, Russia.
9. Struhl, S. (2015), Practical text analytics: Interpreting text and unstructured data for business intelligence, 1st edition, Kogan Page, London, Philadelphia, New Delphi.

Full text: PDF (in Russian)

FORMATION OF TOTALLY SELF-CHECKING STRUCTURES OF CONCURRENT ERROR DETECTION SYSTEMS WITH THE USE OF CONSTANT-WEIGHT CODE “1-OUT-OF-3”

V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. EfanovV.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov

Èlektron. model. 2018, 38(6):25-44
https://doi.org/10.15407/emodel.38.06.025

ABSTRACT

The new approach to concurrent error detection system organization with provision of property of totally self-checking structure based on Boolean complement method by constant-weight code “1-out-of-3” is offered in the paper. This approach is based on distinguishing the groups of outputs of tested device (three unidirectionally independent outputs in each) meeting the requirements of monotonous independence with their further test using “1-out-of-3” constant-weight code and unification of outputs of certain testers at the exits of self-checking comparator. Formulas of complement functions calculation are adduced; they allow providing the complex of test combinations for “1-out-of-3” code checker as well as for all XOR gates in Boolean complement block structure. Conditions providing totally self-checking of the structure are declared.

KEYWORDS

concurrent error detection system, Boolean complement, constant-weight code, totally self-checking structure, checking, structural redundancy.

REFERENCES

1. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Self-checking devices and failover systems], Radio i svyaz, Moscow, Russia.
2. Nicolaidis, M. and Zorian, Y. (1998), On-line testing for VLSI – a compendium of approaches, Journal of electronic testing: theory and applications, no. 12, pp. 7-20.
3. Mitra, S. and McCluskey, E.J. (2000), Which concurrent error detection scheme to choose?”, Proceedings of International Test Conference 2000, USA, Atlantic City, NJ, October 03-05, 2000, pp. 985-994.
4. Sapozhnikov, V.V. et al. (2002), “Organization of functional checking of combinational circuits by the logic complement method”, Elektronnoe modelirovanie, Vol. 24, no. 6, pp. 52- 66.
5. Goessel, M., Morozov, A.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2003), “Logic complement, a new method of checking the combinational circuits”, Avtomatika i telemekhanika, no. 1, pp. 167-176.
6. Parkhomenko, P.P. and Sogomonyan, E.S. (1981), Osnovy tekhnicheskoy diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) [Basics of technical diagnostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow,
Russia.
7. Goessel, M., Sapozhnikov, Vl., Saposhnikov, V. and Dmitriev, A. (2000), “A new method for concurrent checking by use of a 1-out-of-4 code”, Proceedings. of the 6th IEEE International On-line Testing Workshop, July 3-5, 2000, Palma de Mallorca, Spain, pp. 147-152.
https://doi.org/10.1109/OLT.2000.856627
8. Morozov, A., Sapozhnikov, V.V., Saposhnikov, Vl.V. and Goessel, M. (2000), “New selfchecking circuits by use of Berger-codes”, Proceedings. of the 6th IEEE International On-line Testing Workshop, July 3-5, 2000, Palma de Mallorca, Spain, pp.171-176.
9. Sapozhnikov, V.V. et al. (2004), “Design of totally self-checking combinational circuits by use of complementary circuits”, Proceedings of East-West Design & Test Workshop, Yalta, Ukraine, 2004, pp. 83-87.
10. Goessel, M., Morozov, A.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2005), “Checking combinational circuits by the method of logic complement”, Avtomatika i telemekhanika, no. 8, pp. 161-172.
https://doi.org/10.1007/s10513-005-0174-2
11. Göessel, M., Ocheretny, V., Sogomonyan, E. and Marienfeld, D. (2008), New methods of concurrent checking: Edition 1, Springer Science+Business Media B.V., Dodrecht, the Netherlands.
12. Sen, S.K. (2010), “A self-checking circuit for concurrent checking by 1-out-of-4 code with design otimization using constraint don’t cares”, National Conf. on Emerging trends and advances in Electrical Engineering and Renewable Energy (NCEEERE 2010), Sikkim Manipal Institute of Technology, Sikkim, December 22-24, 2010.
13. Das, D.K., Roy, S.S., Dmitiriev, A., Morozov, A. and Göessel,M. (2012), “Constraint don’t cares for optimizing designs for concurrent checking by 1-out-of-3 codes”, Proceedings of the 10th International Workshops on Boolean Problems, Freiberg, Germany, September 2012, pp. 33-40.
14. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2016), “Method of logical devices concurrent error detection system based on “2-out-of-4” code”, Izvestiya vuzov. Priborostroenie, Vol. 59, no. 7, pp. 524-533. DOI 10.17586/0021-3454-2016-59-7-524-533.
15. Sapozhnikov, V., Sapozhnikov, Vl. and Efanov, D. (2015), “Concurrent error detection of combinational circuits by the method of Boolean complement on the base of «2-out-of-4» code”, Proceedings of the 14th IEEE East-West Design & Test Symposium (EWDTS'2016), Yerevan, Armenia, October 14-17, 2016, pp. 126-133.
16. Lala, P.K. (2007), Self-checking and fault-tolerant digital design, Morgan Kaufmann Publishers, San Francisco, USA.
17. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1991), “About synthesis of self-checking checkers for 1-out-of-3 code”, Avtomatika i telemekhanika, no. 2, pp. 178-188.
18. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1992), Samoproveryaemye diskretnye ustroystva [Self-checking discrete devices], Energoatomizdat, St. Petersburg, Russia.
19. Aksyonova, G.P. (1979), “Necessary and sufficient conditions for the design of totally checking circuits of compression by modulo 2”, Avtomatika i telemekhanika, no. 9, pp. 126-135.
20. Busaba, F.Y. and Lala, P.K. (1994), “Self-checking combinational circuit design for single and unidirectional multibit errors”, Journal of electronic testing: theory and applications, Vol. 5, Iss. 5, pp. 19-28.
https://doi.org/10.1007/BF00971960
21. Sapozhnikov, V.V., Morozov, A., Sapozhnikov, Vl.V. and Göessel, M. (1998), “A new design method for self-checking unidirectional combinational circuits”, Journal of electronic testing: theory and applications, Vol. 12, Iss. 1-2, pp. 41-53.
22. Goessel, M., Morozov, A.A., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1997), “Investigation of combination self-testing devices having independent and monotonously independent outputs”, Avtomatika i telemekhanika, no. 2, pp. 180-193.
23. David, R. (1978), “Totally self-checking 1-out-of-3 checker”, IEEE Transactions on Computers, Vol. C-27, pp. 570-572.
https://doi.org/10.1109/TC.1978.1675149
24. Golan, P. (1984), “Design of totally self-checking checker for 1/3 code”, IEEE Transactions on Computers, Vol. 33, p. 285.
25. Lo, J. and Thanawastien, S. (1990), “On the design of combinational totally self-checking 1/3 code checkers”, IEEE Transactions on Computers, Vol. 39, pp. 387-393.
https://doi.org/10.1109/12.48869
26. Paschalis, A., Gaitanis, N., Gizopoulos, D. and Kostarakis, P. (1998), “A totally self-checking 1-out-of-3 code error indicator”, Journal of electronic testing: theory and application, Vol. 13, Iss.1, pp. 61-66.
https://doi.org/10.1023/A:1008341301415
27. Collection of digital design Benchmarks, available at: http://ddd.fit.cvut.cz/prj/Benchmarks/.
28. Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.R., Brayton, R.K. and Sangiovanni-Vincentelli, A. (1992), SIS: A system for sequential circuit synthesis, Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA.

Full text: PDF (in Russian)

FUZZY SET FEATURES OF ONE-DIMENSIONAL TIME SERIES

Yu.N. Minaev, O.Yu. Filimonova, J.I.MinaevaYu.N. Minaev, O.Yu. Filimonova, J.I.Minaeva

Èlektron. model. 2018, 38(6):45-66
https://doi.org/10.15407/emodel.38.06.045

ABSTRACT

A problem of structuring the time series (TS) (in a form of a window, fragment, segment or others structure parts) has been investigated, as well as presentation of a separate window in the form of 2D tensor  with X matrix of dimensionality m x m (m · m is the number of window elements TS) with following determination of m -vectors u, v (with certain restrictions), which for the given matrix of data X minimize a criterion ||X-Kr uvT||2F +Pλ(u,v), where trace{(X - uvT)(X - uvT)T}; Pλ(u,v)— a penalty function, -Kr — a symbol of Kronecker difference. Vectors u, v are considered as a subset of ordered pairs, where vector v plays a role of
membership function, i.e. (v →[0, 1]). The expediency of using the procedure of a singular decomposition
for this purpose is shown.

A subset of ordered pairs {u, v}, considered as psevdo FS, represents 2D tensor with the matrix of dimensionality 2 x m, allows us to shorten a body of stored information (m · m > 2 · m), to obtain hidden knowledge in the form of the spectrum of singular values and to obtain new possibilities in deciding the problems of forecasting and anomaly identifications of TS anomalies as the result of using the tensor invariants.

KEYWORDS

fuzzy set, time row, tensor decomposition, singular values, Kronecker product.

REFERENCES

1. Esbensen, K. (2005), Analiz mnogomernykh dannykh. Izbrannyye glavy [Analysis of multidimensional data, Selected chapters], Translated from English by S.V. Kucheryavsky, Ed by O.Ye. Rodionovoy, Izdatelstvo IPHV RAN, Chernogolovka, Russia.
2. Dobos, L. and Abonyi, J. (2012), On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation, Chemical Engineering Science,Vol. 75, pp. 96-105.
3. Ringberg, H., Soule, A., Rexford, J. and Diot Cr. (2007), Sensitivity of PCA for traffic anomaly detection, SIGMETRICS’07, June 12-16, 2007, San Diego, California, USA. Copyright 2007 ACM 978-1-59593-639-4/07/0006
4. Skillicorn, D. (2007), Data mining and knowledge discovery series. Understanding complex datasets. Data mining with matrix decompositions, Chapman & Hall/CRC, London, UK.
5. Minayev, Yu.N., Zhukov, I.A. and Filimonova, O.Yu. (2006), “Prediction of time deried in tensor basis”, Elektronnoe modelirovanie, Vol. 28, no. 2, pp. 18-34.
6. Laub, A.J. (2005), Matrix analysis for scientists and engineers, available at: www. c-securehost.com/SIAM/ot91.html.
7. Bader, B.W. and Kolda, T.G. (2006), SANDIA REPORT. SAND2006-7592. Efficient MATLAB computations with sparse and factored tensors, Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550, USA.
8. Shen, H. and Huang, J.Z. (2008), Sparse principal component analysis via regularized low rank matrix app-roximation, Journal of Multivariate Analysis, Vol. 99, pp.1015-1034.
9. Kibangou, A.Y. (2009), Tensor decompositions and Applications. An overview and some contribu-tions. GIPSA-N_CS. March 17, 2009, 88 ð., Internet resource.
10. Bader, W.B. and Kolda, T.G. (2006), Tensor decompositions, the MATLAB Tensor Toolbox, and applications to data analysis. Tensor decompositions. Multilinear operators for higher-order decompositions. Technical Report SAND2006-2081, Sandia National Laboratories, April 2006, Albuquerque, New Mexico 87185 and Livermore, California 94550, USA, 39 pp., available at: - http://csmr.ca.sandia.gov/~tgkolda/ .
11. Minayev, Yu.N., Filimonova, O.Yu. and Minayeva J.I. (2015), “Structured granules of fuzzy set in the problems of granule computing”, Elektronnoe modelirovanie, Vol. 37, no. 1, pp. 77-95.
12. Minayev, Yu.N., Filimonova, O.Yu. and Minayeva, J.I. (2014), “Kroneker (tenzor) models of fuzzy-set granules, Kibernetika i sistemnyi analiz, Vol. 50, no. 4, pp. 42-52.
13. Minayev, Yu.N., Filimonova, O.Yu. and Minayeva, J.I. (2013), Tensor models of NM-granules and their use for solution of problems of fuzzy arithmetic, Iskusstvennyy intellekt, no. 2, pp. 22-31.
14. Silva, V.D. and Lim, L.-H. Tensor rank and the ill-posedness of the best low-rank approximation problem, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305-9025.
15. Voyevodin, V.V. and Voyevodin, Vl.V. (2006), Entsiklopediya lineynoy algebry. Electronnaya sistema LINEAL [Encyclopaedia of linear algebra. Electron system LINEAL], BKHV, St-Petersburg, Russia.
16. Kofman, A. (1982), Vvedeniye v teoriyu nechetkikh mnozhestv [Introduction into the theory of fuzzy sets], Translated from French, Radio i svyaz, Moscow, Russia.
17. Van Loan, C.F. and Pitsianis, N. (1993), Approximation with Kronecker products, Eds M.S. Moonen et al., Linear Algebra for Large Scale and Real-Time Applications, Kluver Publishers, Dodrecht, the Netherlands.
18. Dompierre, P. (2010), Properties of singular value decomposition matrix computations — CPSC 5006, available at: www.cs.laurentian.ca/jdompierre/html/CPSC5006E_ F2010/ cours/ch05_ SVD _Properties.pdf
19. Witten, D.M., Tibshirani, R. and Trevor, H. (2009), A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics Vol. 10, no. 3, pp. 515-534.15. Voyevodin, V.V. and Voyevodin, Vl.V. (2006), Entsiklopediya lineynoy algebry. Electronnaya sistema LINEAL [Encyclopaedia of linear algebra. Electron system LINEAL], BKHV, St-Petersburg, Russia.

Full text: PDF (in Russian)